How Grothendieck simplified algebraic geometry

Authors

  • Colin McLarty Case Western Reserve University
  • Norman R. Madarasz PUCRS (Tradutor)

DOI:

https://doi.org/10.15448/1984-6746.2016.2.26227

Keywords:

Algebraic geometry. Topology. Sheave. Scheme. Variety. Category theory.

Abstract

Philosophers, and not only philosophers of mathematics, have reason to notice what Grothendieck saw in mathematics and especially how close the highest level theory can be to concrete motivations. Plenty of geometers will say that, far from simplifying anything, Grothendieck made algebraic geometry more complicated, abstract, and difficult. And plenty of philosophers suspect mathematicians like abstraction and difficulty for their own sake. But in fact Grothendieck's ideas grew surprisingly directly from concrete geometric problems known to Riemann and Poincaré. They spread because they made Weil's conjectures in arithmetic easier to understand and finally prove. The archetypal post-Grothendieck textbook Algebraic Geometry by Hartshorne is easier to read, and covers more general theorems, and treats more concrete geometric problems, than the previous leading advanced text Foundations of Algebraic Geometry by Weil. This article describes what Grothendieck simplified and how. Grothendieck says the elegant mathematician Jean-Pierre Serre uses the "method of hammer and chisel," seeking swift, powerful tools to cut through hard problems. And he calls Serre's influence indispensable to his own work. But Grothendieck's ideal is the "method of the rising sea,'' allowing time to develop a general framework to soften a problem before trying to solve it.

Downloads

Download data is not yet available.

References

ARTIN, Michael. Interview. In Joel Segel, editor, Recountings: Conversations with MIT Mathematicians. A. K. Peters/CRC Press, Wellesley MA, 2009. p. 351-374.

ARTIN, Michael; GROTHENDIECK, Alexander; VERDIER, Jean-Louis. Théorie des Topos et Cohomologie Etale des Schémas. Séminaire de géométrie algébrique du Bois-Marie, 4. Springer-Verlag, 1972. (Três volumes, citado como SGA 4). DOI: https://doi.org/10.1007/BFb0081551

ATIYAH, Michael. The role of algebraic topology in mathematics. Journal of the London Mathematical Society, 41 (1966), p. 63-69. DOI: https://doi.org/10.1112/jlms/s1-41.1.63

______. Bakerian lecture, 1975: Global geometry. Proceedings of the Royal Society of London. Series A, 347, 1650 (1976) p. 291-299. DOI: https://doi.org/10.1098/rspa.1976.0001

BERTHELOT, Pierre; GROTHENDIECK, Alexander; ILLUSIE Luc. Théeorie des intersections et théeoréeme de Riemann-Roch. Number 225 in Séminaire de géométrie algébrique du Bois-Marie, 6. Springer-Verlag, 1971. (Geralmente citado como SGA 6).

BOTT, Raoul. Review of A. Borel and J-P. Serre, Le théoréme de Riemann-Roch, in Bull. Soc. Math. France 86, 1958, p. 97-136. Mathematical Reviews (MR0116022 (22#6817), 1961.

COLMEZ, Pierre; SERRE, Jean-Pierre (ed.). Correspondance Grothen -dieck-Serre. Société Mathématique de France, 2001. Ampliado para Grothen-dieck-Serre Correspondence: Bilingual Edition, American Mathematical Society, and Société Mathématique de France, 2004.

DEDEKI ND, Richard; WEBER, Heinrich. Theorie der algebraischen funktionen einer veränderlichen. J. Reine Angew. Math., 92, (1882), p. 181-290. Translated and introduced by John Stillwell as Theory of Algebraic Functions of One Variable, American Mathematical Society and London Mathematical Society, 2012. DOI: https://doi.org/10.1515/9783112342404-006

DELIGNE, Pierre (ed.). Cohomologie étale, Séminaire de géométrie algébrique du Bois- Marie; SGA 4 1/2. Springer-Verlag, 1977. (Geralmente citado como SGA 4 1/2. Este não é estritamente um relatório sobre o Seminário de Grothendieck). DOI: https://doi.org/10.1007/BFb0091516

DELIGNE, Pierre. Quelques idées maîtresses de l'oeuvre de A. Grothen-dieck. In Matériaux pour l'Histoire des Mathématiques au XXe Siécle (Nice, 1996), p 11-19. Soc. Math. France, 1998.

EISENBUD, David. Commutative Algebra. New York: Springer-Verlag, 2004.

GROTHENDIECK, Alexander. A general theory of fibre spaces with structure sheaf. Technical report, University of Kansas, Dept. of

Mathematics, 1955.

______. Sur quelques points d'algébre homologique. Tôhoku Mathematical Journal, 9 (1957), p. 119-221. DOI: https://doi.org/10.2748/tmj/1178244839

______. The cohomology theory of abstract algebraic varieties. In: Proceedings of the International Congress of Mathematicians, 1958. Cambridge University Press, 1958. p. 103-118.

______. Revêtements Étales et Groupe Fondamental. Séminaire de géométrie algébrique du Bois-Marie, 1. Springer-Verlag, 1971. (Geralmente citado como SGA 1).

______. Récoltes et Semailles}. Université des Sciences et Techniques du Languedoc, Montpellier, 1985-1987. Publicado em vários volumes sucessivos.

GROTHENDIECK, Alexander; DIEUDONNÉ. Jean. Éléments de Géométrie Algébrique I. Springer-Verlag, 1971.

ILLUSIE, Luc; BEILINSON, Alexander; BLOCH, Spencer; DRINFELD, Vladimir et al. Reminiscences of Grothendieck and his school. Notices of the Amer. Math. Soc., 57, (2010), p. 1106-1115.

KRONECKER, Leopold. Grundzüge einer arithmetischen theorie der algebraischen grössen. Crelle, Journal für die reine und angewandte Mathematik, XCII (1882), p. 1-122, 1882. DOI: https://doi.org/10.1515/crll.1882.92.1

LANG, Serge. Algebra. 3rd ed. Reading, Mass.: Addison-Wesley, 1993. MacLANE, Saunders. The work of Samuel Eilenberg in topology. In: Heller, Alex; Tierney, Myles (ed.). Algebra, topology, and category theory: a collection of papers in honor of Samuel Eilenberg, New York: Academic Press, 1976. p. 133-144. DOI: https://doi.org/10.1016/B978-0-12-339050-9.50015-8

McLARTY, Colin. The rising sea: Grothendieck on simplicity and generality I. In: Gray , Jeremy; Parshall, Karen (eds.). Episodes in the History of Recent Algebra. American Mathematical Society, 2007. p. 301-326.

PARIKH, Carol. The unreal life of Oscar Zariski. New York: Springer-Verlag, 2009. DOI: https://doi.org/10.1007/978-0-387-09430-4

POINCARÉ, Henri. Analysis situs, 1895-1904. Collected in Gaston Darboux et al. (eds.). Oeuvres de Henri Poincaré in 11 volumes. Paris: Gauthier-Villars, 1916-1956.

Vol. VI, p. 193-498. (Eu cito a tradução por John Stillwell, Papers on Topology: Analysis Situs and Its Five Supplements, Providence, American Mathematical Society, 2010. p. 232.

RAYNAUD, Michel. "André Weil and the foundations of algebraic geometry". Notices of the American Mathematical Society, 46 (1999), p. 864-867.

SERRE, Jean-Pierre. Faisceaux algébriques cohérents. Annals of Mathematics, 61 (1955), p. 197-277. DOI: https://doi.org/10.2307/1969915

SERRE, Jean-Pierre. Espaces fibrés algébriques. In: Séminaire Chevalley, chapter exposé n. 1. Secrétariat Mathématique, Institut Henri Poincaré, 1958.

SERRE, Jean-Pierre. "Rapport au comitée Fields sur les travaux de A. Grothendieck (1965)". K-Theory, 3 (1989), p. 199-204. DOI: https://doi.org/10.1007/BF00533369

SERRE, Jean-Pierre. "Andrée Weil". 6 May 1906-6 August 1998. Biographical Memoirs of Fellows of the Royal Society, 45 (1999), p. 520-529. DOI: https://doi.org/10.1098/rsbm.1999.0034

SERRE, Jean-Pierre. Exposés de Séminaires 1950-1999. Société Mathématique de France, 2001.

SWINNERTON-DYER, Peter. A Brief Guide to Algebraic Number Theory. Cambridge University Press, 2001. DOI: https://doi.org/10.1017/CBO9781139173360

TAUSSKY, Olga. "Sums of squares". American Mathematical Monthly, 77 (1970), p. 805-830. DOI: https://doi.org/10.1080/00029890.1970.11992594

VAN DER WAERDEN, Bartel L. "Zur Nullstellentheorie der Polynomideale". Mathematische Annalen, 96 (1926), p. 183-208. DOI: https://doi.org/10.1007/BF01209162

WEIBEL Charles. An introduction to homological algebra. Cambridge University Press, 1994. DOI: https://doi.org/10.1017/CBO9781139644136

WEIL, André. Foundations of Algebraic Geometry. American Mathematical Society, 1946. DOI: https://doi.org/10.1090/coll/029

WEIL, André. "Number of solutions of equations in finite fields". Bulletin of the American Mathematical Society, 55 (1949), p. 487-495. DOI: https://doi.org/10.1090/S0002-9904-1949-09219-4

WEIL, André. Number-theory and algebraic geometry. In: Proceedings of the International Congress of Mathematicians (1950: Cambridge, Mass.), p. 90-100. American Mathematical Society, 1952.

Published

2016-12-31

How to Cite

McLarty, C., & Madarasz, N. R. (2016). How Grothendieck simplified algebraic geometry. Veritas (Porto Alegre), 61(2), 276–294. https://doi.org/10.15448/1984-6746.2016.2.26227

Issue

Section

ontological realism, mathematical ontology and logic