First phytochemical study and biological activity of the leaves ethanolic extract from Cissus spinosa Cambess

  • Adilson Paulo Sinhorin Federal University of Mato Grosso, Post-Graduation Program in Environmental Science, Institute of Natural, Human and Social Sciences, Campus of Sinop. Sinop, Mato Grosso.
  • Bruna Serpa de Almeida Godoy Federal University of Mato Grosso, Post-Graduation Program in Environmental Science, Institute of Natural, Human and Social Sciences, Campus of Sinop. Sinop, Mato Grosso.
  • Valéria Dornelles Gindri Sinhorin Federal University of Mato Grosso, Post-Graduation Program in Environmental Science, Institute of Natural, Human and Social Sciences, Campus of Sinop. Sinop, Mato Grosso.
  • Lindsey Castoldi Federal University of Mato Grosso, Health Sciences Institute, Campus of Sinop. Sinop, Mato Grosso.
  • Marina Mariko Sugui Federal University of Mato Grosso, Post-Graduation Program in Environmental Science, Institute of Natural, Human and Social Sciences, Campus of Sinop. Sinop, Mato Grosso.
  • Rogério de Campos Bicudo Embrapa Agrossilvipastoril. Sinop, Mato Grosso.
Keywords: antioxidant, Cissus, oxidative stress, flavonoids, genotoxicity, immunomodulation.


AIMS: The objective of this study was to identify the phytochemical profile and to evaluate the biological effects of the crude ethanolic extract (EE) and the ethanolic fraction (EF) of leaves of the species Cissus spinosa Cambess, after oxidative stress induced by cyclophosphamide (CP) in mice.

METHODS: Phytochemical profile was performed detecting functional groups and, analysis of total flavonoids and phenols concentration, as well as the antiradical activity in EE and EF. The phytochemical characterization was done for the identification of flavonoids present in the leaves of the plant. In the biochemical tests, hematological parameters, glucose and total cholesterol dosages in plasma, enzymatic and non-enzymatic antioxidants and lipid damage marker were evaluated in different tissues (liver, kidney and heart), besides genotoxic and immunological analyzes. The animals received 15 days of treatment, via gavage, with EE (50 mg kg-1) or EF (50 mg kg-1) and on the 15th day, an intraperitoneal injection of CP (100 mg kg-1) or saline (0.9%). After 24 h the last treatment, the animals were anesthetized for blood withdrawal, sacrificed and removal of the organs.

RESULTS: In the phytochemical analyzes, the presence of alkaloids, flavonoids and phenols was identified, the latter presented a higher concentration for EF. Eight flavonoids were identified - Rutin, Quercetin-3-β-D-glucoside, Quercitrin, Taxifolin, Quercetin, Canferol, Luteolin and Apigenin. In the biochemical analyzes, in general, EE showed a better antioxidant action against oxidative damages, hypoglycemic and antitilipemic action when comparing with EF, probably due to the synergism caused by flavonoids. It was observed the reduction and an increase of micronucleated polychromatic erythrocytes, due to the action of antioxidant compounds and alkaloids present in the plant, also considering the question of the seasonal period that directly interferes in the production of these compounds. In the immunological analysis, the extracts did not stimulate the spontaneous production of oxygen peroxide (H2O2) and nitric oxide (NO). 

CONCLUSIONS: Other studies, such as the variation of the chemical composition of the plant by local seasonality, hypoglycemic and antilipemic action, should be carried out to better delineate the biological action present in this plant.


Download data is not yet available.


Elmastas M, Demir A, Genç N, Dölek Ü, Gunes M. Changes in flavonoid and phenolic acid contentes in some Rosa species during ripening. Food Chem. 2017;235:154–159.

Gindri AL, Silva M, Marchi MB, Brum LS, Athayde ML, Hoelzel SCSM. Análise fitoquímica das cascas e do miolo da raiz de Urera baccifera (L.) Gaudich (Urticaceae). Saúde (Santa Maria). 2010;36(2):63-70.

Soundarya SP, Sanjay V, Menon AH, Dhivya S, Selvamurugan N. Effects of flavonoids incorporated biological macromolecules based scaffolds in bone tissue engineering. Int J Biol Macromol. 2017;110:74-87.

Petrica EEA, Sinhorin AP, Sinhorin VDG, Vieira Junior GM. First phytochemical studies of japecanga (Smilax fluminensis) leaves: flavonoids analysis. Rev Bras Farmacogn. 2014;24:443-45.

Saldan NC, Almeida RTR, Avínvola A, Porto C, Galuch MB, Magon TFS, Pilau EJ, Svidzinski TIE, Oliveira CC. Development of na analytical method fot identification of Aspergillus flavus based on chemical markers using HPLC-MS. Food Chem. 2018;241:113–21.

Rocha GF, Kise F, Rosso AM, Parisi MG. Potential antioxidant peptides produced from whey hydrolysis with an immobilized aspartic protease from Salpichroa origanifolia fruits. Food Chem. 2017;237:350-55.

Artacho-Cordón F, León J, Sáenz JM, Fernández MF, Martin-Olmedo P, Olea N, Arrebola JP . Contribution of persistent organic polutant exposure to the adipose tissue oxidative microenvironment in an adult cohort: a muktipollutant approach. Environ Sci Technol. 2016;50:13529-38.

Bajpai VK, Baek KH, Kang SC. Antioxidant and free radical scavenging activities of taxoquinone, a diterpenoid isolated from Metasequoia glyptostroboides. S Afr J Bot. 2017;111:93-98.

Sahu S, Das P, Ray M, Sabat SC. Osmolyte modulated enhanced rice leaf catalase activity under salt-stress. Adv Biosci Biotechnol. 2010;1:39–46.

Barbosa KBF, Costa NBF, Alfenas RCG, De Paula SO, Minim VPR, Bressan J. Estresse oxidativo: conceito, implicações e fatores modulatórios. Rev Nutr. 2010:629–43.

Júnior LR, Höehr NF, Vellasco AP. Sistema antioxidante envolvendo o ciclo metabólico da glutationa associado a métodos eletroanalíticos na avaliação do estresse oxidativo. Quim. Nova. 2001;24(1):112-19.

Popov D. Protein S-Glutathionylation: from current basics to targeted modifications. Arch Physiol Biochem. 2014;120(4): 123-30.

Mazzetti AP, Fiorile MC, Primavera A, Lo Bello M. Review: glutathione transferases and neurodegenerative diseases. Neurochem Int. 2015;82:10-18.

Liu X, Ickert-Bond SM, Chen L, Wen J. Molecular phylogeny of the Cissus L. of Vitaceae (the grape family) and evolution of its pantropical intercontinental disjunctions. Mol Phylogenet Evol. 2013;66:43-53.

Drobnik J, Oliveira AB. Cissus Verticillata (L.) Nicolson and C.E. Jarvis (Vitaceae): Its identification and usage in the sources from 16 th to 19 th Century. J Ethnopharmacol. 2015;171:317-29.

Ferreira MP, Nishijima CM, Seito LN, Dokkedal AL, Lopes-Ferreira M, Di Stasi LC, Vilegas W, Hiruma-Lima CA. Gastroprotective effect of Cissus sicyoides (Vitaceae): involvement of microcirculation, endogenous sulfhyldryls and nitric oxide. J Ethnopharmacol. 2008;117:170-4.

Kumar R, Gupta YK, Singh D, Arunraja S. Cissus quadrangularis attenuates the adjuvante induced arthritis by down regulating pro-inflammatory cytokine and inhibiting angiogenesis. J Ethnopharmacol. 2015;175:346-55.

Lekshmi RK, Rajesh R, Mini S. Ethyl acetate fraction of Cissus quadrangularis stem ameliorates hyperglycaemia – mediated oxidative stress and suppresses inflammatory response in nicotinamide / streptozotocin induced type 2 diabetc rats. Phytomedicine. 2015;22:952-60.

Li Y, Lin D, Jiao B, Xu C, Qin J, Ye G, Su G. Purification, antioxidant and hepatoprotective activities of polysaccharide from Cissus pteroclada Hayata. Int J Biol Macromol. 2015;77:307-13.

Li Y-J, Xu C-T, Lin D-D, Qin J-K, Ye G-J, Deng Q-H. Anti-inflammatory polyphenol constituents derived from Cissus pteroclada Hayata. Bioorg Med Chem Lett. 2016;26:3425-3428.

Bharti M, Borane K, Singhasiya A. Evaluation of wound healing activity of Cissus quadrangularis. World J Pharm Sci. 2014;3(6):822-34.

Beserra FP, Santos RC, Périco LL, Rodrigues VP, Kiguti LRA, Saldanha LL, Pupo AS, Rocha LRM, Dokkedal AL, Vilegas W, Hiruma-Lima CA. Cissus sicyoides: pharmacological mechanisms involved in the anti-inflammatory and antidiarrheal activities. Int J Mol Sci. 2016;17:149.

Braga TV. Avaliação da atividade farmacológica de Cissus verticillata Nicolson & C. E. Jarvis subsp. verticillata como antioxidante, antifúngico, hipoglicemiante e cicatrizante Dissertation. [Ouro Preto]: Universidade Federal de Ouro Preto, MG; 2008. 175p.

Pott A, Pott VJ. Empresa Brasileira de Pesquisa Agropecuária, Centro de Pesquisa Agropecuária do Pantanal. Embrapa, Corumbá – MS. 1994.

Casanova NA, Simoniello MF, Nigro MML, Carballo MA. Modulator effect of watercress against cyclophosphamide-induced oxidative stress in mice. Medicina. 2017;77:201-6.

Mansour HH, El Kiki SM, Hasan HF. Protective effect of n-acetylcysteine on cyclophosphamide-induced cardiotoxicity in rats. Environ Toxicol Pharmacol. 2015;40:417-22.

Abrahan, P, Isaac, B. The effects of oral glutamine on cyclophosphamide-induced nephrotoxicity in rats. Hum Exp Toxicol. 2010;30:616-623.

MacAllister SL, Martin-Brisac N, Lau V, Yang K, O’brien PJ. Acrolein and chloroacetaldehyde: an examination of the cel and cell-free biomarkes of toxicity. Chem Biol Interact. 2013;202:259-66.

Teles KA, Medeiros-Souza P, Lima FAC, Araújo BG, Lima RAC. Rotina de administração de ciclofosfamida em doenças autoimunes reumáticas: uma revisão. Rev Bras Reumatol. 2017;57(6):596-604.

Avci H, Epikmen ET, Ipek E, Tunca R, Birincioglu SS, Aksit H, Sekkin S, Akkoç AN. Protective effects of silymarin and curcumin on cyclophosphamide-induced cardiotoxicity. Exp Toxicol Pathol. 2017;69(5):317-27.

Rehman MU, Tahir M, Ali F, Qamar W, Lateef A, Khan R, Quaiyoom A, Oday-O-Hamiza Sultana S. Cyclophosphamide-induced nephrotoxicity, genotoxicity and damage in kidney genomic DNA of Swiss albino mice: the protective effect of ellagic acid. Mol Cell Biochem. 2012;365:119-27.

Sun Y, Ito S, Nishio N, Tanaka Y, Chen N, Liu L, Isobe K. Enhancement of the acrolein-induced production of reactive oxygen species and lung injury by gadd Oxid Med Cell Longevity. 2015;34:170309.

Costa AF. Farmacognosia. 5th ed. Lisboa: Fundação Calouste Gulbenkian. (3);1994.

Simões CMO, Schenkel EP, Gosmann G, Mello JCP, Mentz LA, Petrovick PR. Farmacognosia: da Planta ao Medicamento. 5th ed. Porto Alegre: Ed. UFRGS; Florianópolis: Ed. UFSC; 2003.

Sousa, CMM, Silva HR, Vieira Jr GM, Ayres MCC, Costa CLS, Araújo DS, Cavalcanti LCD, Barros EDS, Araújo PBM, Brandão MS, Chaves MH. Fenóis totais e atividade antioxidante de cinco plantas medicinais. Quim Nova. 2007;30:351-55.

Rio RGW. Métodos de Controle Químico de Amostras de Própolis [Dissertation]. [São Paulo]: Universidade Federal de São Paulo; 1996. 81 p.

Ares AM, Valverde S, Nozal MJ, Bernal JL, Bernal J. Development and validation of a specifc method to quantify intact glucosinolates in honey by LC-MS/MS. J Food Comp Anal. 2016;46:114-22.

Terpinc P, Cigic B, Polak T, Hribar J, Porl T. LC-MS analysis of phenolic compounds and antioxidant activity of buckwheat at different stages of malting. Food Chem. 2016;210:9-17.

Malone MH. The pharmacological evaluation of natural products - general and specific approachs to screening ethnopharmaceuticals. J Ethnopharmacol. 1983;8:127-147.

Misra HP, Fridovich I. The role of superoxide anion in the auto-oxidation o epinephrine and a simple assay for superoxide dismutase. J Biol Chem. 1972;247:3170-75.

Habig WH, Pabst MJ, Jacoby WB. Glutathione S-Transferase, the first enzymatic step in mercapturic acid formation. J Biol Chem. 1974;249:7130-9.

Nelson DP, Kiesow LA. Enthalphy of decomposition of hydrogen peroxide by catalase at 25 °C (with molar extinction coefficients of H2O2 solution in the uv). Anal Biochem. 1972;49:474-78.

Sedlack J, Lindsay RH. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem. 1968;25:192-205.

Buege JA, Aust SD. Microsomal lipid peroxidation. Methods Enzymol. 1978;52:302-9.

Bradford MM. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.

MacGregor JT, Heddle JA, Hite M, Margolin BH, Ramel C, Salamone MF, Tice RR, Wild D. Guidelines for the conduct of micronucleus assays in mammalian bone marrow erythrocytes. Mutat Res. 1987;189: 103–112.

Manoharan K, Banerjee MR. Β-carotene reduces sister chromatid exchange induce chemical carcinogens in mouse mammary cells in organ culture. Cell Biol Int Rep. 1985;8:783–89.

Waters MD, Brady AL, Stack HF, Broxkman HE. Antimutagenic profiles for some model compounds. Mutat Res. 1990;238:57–85.

Pick E, Mizel D. Rapid microassays for the measurement of superoxide and hydrogen peroxide production by macrophages in culture using an automatic enzyme immunoassay reader. J Immunol Methods. 1981;46:211-26.

Green LC, Tannenbaum SR, Goldman P. Nitrate synthesis in the germ free and conventional rat. Science. 1981;212:56-58.

Pereira BCA. Teste estatístico para comparar proporções em problemas de citogenética. In: Rabello-Gay MN, Rodrigues MA, La R, Monteleone-Neto R (eds) Mutagênese, Carcinogênese e Teratogênese: métodos e critérios de avaliação. Soc Bras Gene. 1991:113-21.

Yadav P. Phytochemical screening of ethanolic extract of Cissus quadrangulares. J Med Plants Stud. 2016;4(4):287-89.

Uriu DM, Godoy BSA, Battirola LD, Andrighetti CR, Marques MI, Valladão DMS. Temporal variation of the total phenolic compounds concentration in Vochysia divergens pohl. (Vochysiaceae) leaves in the brazilian pantanal. Rev Árvore. 2017;41(3): e410316.

Simirgiotis MJ, Quispe C, Areche C, Sepúlveda B. Phenolic compounds in chilean mistletoe (quintral, tristerix tetrandus) analyzed by UHPLC-Q/Orbitrap/MS/MS and its antioxidant properties. Molecules. 2016;21:1-15.

Pandit A, Sachdeva T, Bafna P. Ameliorative effect of leaves of Carica papaya in ethanol and antitubercular drug induced hepatotoxicity. Br J Pharmacol. 2013;3:648-61.

Yang CJ, Wang ZB, Mi YY, Gao MJ, Lv JN, Meng YH, Yang BY, Kuang HX. UHPLC-MS/MS determination, pharmacokinetic, and bioavailability study of taxifolin in rat plasma after oral administration of its nanodispersion. Molecules. 2016;21:494-504.

Chen Y, Yu H, Wu H, Pan, Y, Wang K, Jin Y, Zhang C. Characterization and quantification by LC-MS/MS of the chemical components of the heating products of the flavonoids extract in pollen typhae for transformation rule exploration. Molecules. 2015; 20:18352-66.

Çelik SE, Tufan AN, Bekdeser B, Özyürek M, Güçlü K, Apak R. Identification and determination of phenolics in lamiaceae species by Uplc-Dad-Esi-Ms/Ms. J Chromatogr Sci. 2017;55(3):291-300.

Barbosa FG, Sugui MM, Sinhorin VDG, Bicudo RC, Moura FR, Sinhorin AP. First phytochemical and biological study of the ethanolic extract from Capirona decorticans (Rubiaceae) leaves. Acta Amaz. 2018;48(4):338-47.

Dai B, Hu Z, Li H, Yan C, Zhang L. Simultaneous determination of six flavonoids from paulownia tomentosa flower extract in rat plasma by LC-MS/MS and its application to a pharmacokinetic study. J Chromatogr B. 2015;26:54-61.

Huyan X-H, Lin Y-P, Gao T, Chen R-Y, Fan Y-M. Immunosuppressive effect of cyclophosphamide on white blood cells and lymphocyte subpopulations from peripheral blood of Balb/C mice. Int Immunopharmacol. 2011;11:1293–1297.

Song Y, Zhang C, Wang C, Zhao L, Wang Z, Dai Z, Lin S, Kang H, Xiaobin M. Ferulic acid against cyclophosphamide-induced heart toxicity in mice by inhibiting NF-κB pathway. Evid Based Complement Alternat Med. 2016:1261270.

Khan RA, Khan MR, Sahreen S. CCl4-induced hepatotoxicity: protective effect of rutin on P53, Cyp2e1 and the antioxidative status in rat. Bmc Complement Alternat Med. 2012;12:178-83.

Magalhães LM, Sinhorin VDG, de Souza CCP, Bicudo RC, Sinhorin AP. Antioxidant Activity and Flavonoids Identification by LC-MS/MS Analysis in Leaf Extract from Trattinnickia rhoifolia Willd. Fronteiras: J Soc Technol Environ Sci. 2019;2(8):13-34.

Pês TS. Efeito da dieta enriquecida com rutina sobre os parâmetros sanguíneos e biomarcadores oxidativos em jundiás (Rhamdia quelen) [dissertation]. [Santa Maria] Universidade Federal de Santa Maria; 2014. 73 p.

Shanmugam S, Thangaraj P, Lima BS, Chandran R, Araújo AAS, Narain N, Serafini MR, Júnior LJQ. Effects of luteolin and quercetina-3-B-D-glucoside identified from Passiflora subpeltata leaves against acetaminophen induced hepatotoxicity in rats. Biomed Pharmacother. 2016;83:1278-85.

Bhatt L, Sebastian B, Joshi V. Mangiferin protects rat myocardial tissue against cyclophosphamide induced cardiotoxicity. J Ayurveda Integr Med.2017;8:62-67.

Kocahan S, Dogan Z, Erdemli E, Taskin E. Protective effect of quercetin against oxidative stress-induced toxicity associated with doxorubicin and cyclophosphamide in rat kidney and liver tissue. Iran J Kidney Dis. 2017;11:124-31.

Beber AP, Souza P, Boeing T, Somensi LB, Mariano, LNB, Cury BJ, Burci LM, Silva CB, Simionatto E, Andrade SF, Silva LM. Constituents of leaves from Bauhinia curvula Benth. exert gastroprotective activity in rodents: role of quercitrin and kaempferol. Inflammopharmacol. 2018;26:539-50.

Gentile D, Fornai M, Colucci R, Pellegrini C, Tirotta E, Benvenuti L, Segnani C, Ippolito C, Duranti E, Virdis A, Carpi S, Nieri P, Neâmeth ZH, Pistelli L, Bernardini N, Blandizzi C, Antonioli L. The flavonoid compound apigenin prevents colonic inflammation and motor dysfunctions associated with high fat diet-induced obesity. PLoS One. 2018;13(4):E0195502.

Kim JH, Lee J, Lee S, Cho EJ. Quercetin and Quercetin-3-B-D-Glucoside improve cognitive and memory function in Alzheimer’s disease mouse. Appl Biol Chem. 2016;59(5):721-28.

Ma JQ, Luo RZ, Jian HX, Liu CM. Quercitrin offers protection against brain injury in mice by inhibiting oxidative stress and inflammation. Food Funct. 2016;7:549-56.

Madunić IV, Madunić J, Antunović M, Mladen Paradžik M, Garaj-Vrhovac V, Breljak D, Marijanović I, Gajski G. Apigenin, a dietary flavonoid, induces apoptosis, DNA damage, and oxidative stress in human breast cancer Mcf-7 and Mda Mb-231 cells. Naunyn-Schmiedeberg's Arch Pharmacol. 2018;391:537-50.

Vishwakarma A, Singh TU, Rungsung S, Kumar T, Kandasamy A, Parida S, Lingaraju MC, Kumar A, Kumar A, Kumar D. Effect of kaempferol pretreatment on myocardial injury in rats. Cardiovasc Toxicol. 2018;18:312-28.

Xie X, Feng J, Kang Z, Zhang S, Zhang L, Zhang Y, Li X, Tang Y. Taxifolin protects rpe cells against oxidative stress-induced apoptosis. Mol Vis. 2017;23:520-28.

Bieski IGC, Leonti M, Arnason JT, Ferrier J, Rapinski M, Violante IMP, Balogun SO, Pereira JFCA, Figueiredo RCF, Lopes CRAS, Silva DR, Pacini A, Albuquerque UP, Martins DTO. Ethnobotanical study of medicinal plants by population of valley of Juruena Region, Legal Amazon, Mato Grosso, Brazil. J Ethnopharmacol. 2015;173: 383–423.

Diniz MFFM, Pessôa HLF, Sá CB, Lira AB, Ramalho LSN, Oliveira KM, Dias GT, Melo CR, Ramalho JA, Lima CMBL. Non-clinical acute and chronic toxicity evaluations of Cissus sicyoides L. (Vitaceae) hydroalcoholic leaf extract. Toxicol Rep. 2018;5:890-6.

Viana GSB, Medeiros ACC, Lacerda AMR, Leal LKAM, Vale TG, Matos FJA. Hypoglycemic and anti-lipemic effects of the aqueous extract from Cissus sicyoides. BMC Pharmacology.2004;4:1-7.

Kour J, Alia MN, Ganaiea HA, Tabassum N. Amelioration of the cyclophosphamide induced genotoxic damage in mice by the ethanolic extract of equisetum arvense. Toxicol. Rep. 2017:563-71.

Lin S, Hao G, Longa M, Laia F, Lia Q, Xionga Y, Tiana Y, Laia D. Oyster (Ostrea plicatula Gmelin) polysaccharides intervention ameliorates cyclophosphamide-induced genotoxicity and hepatotoxicity in mice via the Nrf2 are pathway shuting. Biomed Pharmacother. 2017;95:1067-71.

Makhuvele R, Matshoga RG, Antonissen R, Pieters L, Verschaeve L, Elgorashi EE. Genotoxicity and antigenotoxicity of selected South African indigenous plants. South African J Bot. 2018;114:89-99.

Guterres ZR, Silva AF, Garcez WS, Garcez FR, Fernandes CA, Garcez FR. Mutagenicity and recombinagenicity of Ocotea acutifolia (Lauraceae) aporphinoid alkaloids. Mutat Res. 2013;757:91-96.

León-González AJ, Auger C, Schini-Kerth VB. Pro-oxidant activity of polyphenols and its implication on cancer chemoprevention and chemotherapy. Biochem Pharmacol. 2015;98:371-80.

Aguilar-Ramirez, P. Avaliação do papel desenvolvido pelo gene Slc11a1 na ativação de macrófagos durante a indução de respostas inflamatórias [PhD thesis] [São Paulo]: Universidade de São Paulo; 2012. 102 p.

Oke SL, Tracey KJ. The inflammatory reflex and the role of complementary and alternative medical therapies. Ann NY Acad Sci. 2009;1172:172-80.

Rang HP, Dale MM, Ritter JM, Flower RJ, Henderson G. Farmacologia. Rio de Janeiro: Elsevier; 2011.

Cruvinel WM, Júnior DM, Araújo JAP, Tieko T, Catelan T, Souza AWS, Silva NP, Andrade LEC. Sistema Imunitário – Parte I Fundamentos da imunidade inata com ênfase nos mecanismos moleculares e celulares da resposta inflamatória. Rev Bras Reumatol. 2010;50(4):434-61.

Bhujade AM, Talmale S, Kumar N, Gupta G, Reddanna P, Das SK, Patil MB. Evaluation of Cissus quadrangularis extracts as an inhibitor of COX, 5-LOX, and proinflammatory mediators. J Ethnopharmacol. 2012;141:989-96.

Jainu M, Devi CSS. Gastroprotecive action of Cissus quadrangularis extract against nsaid induced gastric ulcer: role of proinflammatory cytokies and oxidative damage. Chem Biol Interact. 2006;161:262-70.

Srisook K, Palachot M, Mongkol N, Srisook E, Sarapusit S. Anti-inflammatory effect of ethyl acetate extract from Cissus quadrangularis linn may be involved with induction of Heme Oxygenase-1 and suppression of NF-κB activation. J Ethnopharmacol. 2011;133:1008-14.

Lee IT, Lin CF, Huang YL, Chong KY, Ming-Fa Hsieh MF, Huang TH, Cheng CY. Protective mechanisms of resveratrol derivatives against TNF-α-induced inflammatory responses in rat mesangial cells. Cytokine. 2019;113:380-92.

Salazar MAR, Costa JV, Urbina GRO, Cunha VMB, Silva MP, Bezerra PN, Pinheiro WBS, Gomes-Leal W, Lopes AS, Junior RNC. Chemical composition, antioxidant activity, neuroprotective and antiinflammatory effects of cipó-pucá (Cissus sicyoides L.) extracts obtained from supercritical extraction. J Supercrit Fluids. 2018;138:3-45.

How to Cite
Sinhorin, A. P., Godoy, B. S. de A., Sinhorin, V. D. G., Castoldi, L., Sugui, M. M., & Bicudo, R. de C. (2020). First phytochemical study and biological activity of the leaves ethanolic extract from Cissus spinosa Cambess. Scientia Medica, 30(1), e34860.
Original Articles