Investigação da atividade antioxidante do extrato etanólico da casca de Caesalpinia ferrea em camundongos Swiss expostos ao paracetamol
DOI:
https://doi.org/10.15448/1980-6108.2023.1.44520Palavras-chave:
Caesalpinia ferrea, bioquímica, extrato etanólico, estresse oxidativo, paracetamolResumo
Objetivos: foi avaliado o efeito antioxidante do extrato etanólico da casca de Caesalpinia ferrea em modelo de estresse oxidativo induzido por paracetamol (acetaminofeno, PCM).
Métodos: camundongos Swiss machos foram subdivididos em quatro grupos (controle; PCM; PCM+extrato; extrato; n=8) nos quais foi administrada uma dose de paracetamol (250 mg.kg-1) e após três horas foi administrado o tratamento com o extrato (100 mg.kg-1/ dia) por sete dias, via gavagem. Foram determinados biomarcadores de estresse oxidativo, como catalase, glutationa-S-transferase, glutationa reduzida, ácido ascórbico, substâncias reativas ao ácido tiobarbitúrico e proteínas carboniladas do fígado, rins e cérebro, além de parâmetros plasmáticos através da dosagem de glicose, colesterol, triglicerídeos, aspartato aminotransferase e alanina aminotransferase.
Resultados: o extrato de Caesalpinia ferrea foi capaz de reverter os danos lipídicos e proteicos causados pela droga no tecido hepático, e também causou o mesmo efeito nos tecidos renal e cerebral nas proteínas carboniladas. O extrato sozinho diminuiu a atividade da glutationa-S-transferase hepática e aumentou a da catalase e glutationa-S-transferase cerebral, além de diminuir a glicose e o colesterol, mas sem alterar os triglicerídeos.
Conclusões: foi possível concluir que o extrato etanólico da casca de Caesalpinia ferrea apresenta uma boa atividade antioxidante, provavelmente devido à presença de taninos, tendo em vista os danos causados pela alta dose de paracetamol nas amostras investigadas. Entretanto, mais estudos são necessários para um melhor entendimento dos efeitos deste extrato frente aos efeitos encontrados nesta pesquisa.
Downloads
Referências
Bruning MC, Mosegui GB, Viana CM. A. Utilização da fitoterapia e de plantas medicinais em unidades básicas de saúde nos municípios de Cascavel e Foz do Iguaçu-Paraná: a visão dos profissionais de saúde. Ciênc Saúde Colet. 2012;17(10):2675-85. DOI: https://doi.org/10.1590/S1413-81232012001000017
Oliveira AK, Oliveira NA, Resende UM, Martins PF. Ethnobotany and traditional medicine of the inhabitants of the Patanal Negro sub-region and the raizeiros of Miranda and Aquidauna, Mato Grosso do Sul, Brazil. Braz J Biol. 2011;719:283-9. DOI: https://doi.org/10.1590/S1519-69842011000200007
Costa VP, Mayworm MA. Plantas medicinais utilizadas pela comunidade do bairro dos Tenentes - município de Extrema, MG, Brasil. Rev Bras Pl Med. 2011;13(3):282-92. DOI: https://doi.org/10.1590/S1516-05722011000300006
Gallão MI, Normando LO, Vieira IG, Mendes FN, Ricardo NM, Brito ES Morphological, chemical and rheological properties of the main seed polysaccharide from Caesalpinia ferrea Mart. Ind Crops Prod. 2013;47:58- 62. DOI: https://doi.org/10.1016/j.indcrop.2013.02.035
Pereira LP, Mota MR, Brizeno LA, Nogueira FC, Ferreira EG, Pereira MG, Assreuy AMS. Modulator effect of a polysaccharide-rich extract from Caesalpinia ferrea stem barks in rat cutaneous wound healing: Role of TNF-, IL-1β, NO, TGF-β. J Ethnopharmacol. 2016;187:213-23. DOI: https://doi.org/10.1016/j.jep.2016.04.043
Dias AM, Rey-Rico A, Oliveira RA, Marceneiro S, Alvarez-Lorenzo C, Concheiro A, Júnior RN, Braga ME, Sousa HC. Wound dressings loaded with an anti-inflammatory jucá (Libidibia ferrea) extract using supercritical carbon dioxide technology. J Supercrit Fluids. 2013;74:34-45. DOI: https://doi.org/10.1016/j.supflu.2012.12.007
Lima SM, Araújo LC, Sitônio MM, Freitas AC, Moura SL, Correia MT, Malta DJ, Gonçalves-Silva T. Antiinflammatory and analgesic potential of Caesalpinia ferrea. Braz J Pharmacog. 2012;22(1):169-75. DOI: https://doi.org/10.1590/S0102-695X2011005000197
Wyrepkowski CC, Costa DL, Sinhorin AP, Vilegas W, Grandis RA, Resende FA, Santos LC, Characterization and quantification of the compounds of the ethanolic extract from Caesalpinia ferrea stem bark and evaluation of their mutagenic activity. Molecules. 2014;19(10):16039- 57. DOI: https://doi.org/10.3390/molecules191016039
Sousa CC, Gomes SO, Lopes AC, Gomes RL, Britto FB, Lima OS, Valente SE. Comparison of methods to isolate DNA from Caesalpinia ferrea. Genet Mol Res. 2014;13(2):4486-93. DOI: https://doi.org/10.4238/2014.June.16.7
Vasconcelos CF, Maranhão HM, Batista TM, Carneiro EM, Ferreira F, Costa J, Soares LA, Sá MD, Souza TP, Wanderley AG. Hypoglycaemic activity and molecular mechanisms of C. ferrea bark extracts on streptozotocininduced diabetes in Wistars rats. J Ethnopharmacol. 2011;137:1533-41. DOI: https://doi.org/10.1016/j.jep.2011.08.059
Araújo TS, Alencar NL, Amorim EC, Albuquerque UP. New approach to study medicinal plants with tannins and flavonoids contents from the local knowledge. J Ethnopharmacol. 2008;120:72-8. DOI: https://doi.org/10.1016/j.jep.2008.07.032
Zanin JL, Carvalho BA, Martineli OS, Santos MH, Lago JH, Sartorelli P, Viegas-Jr C, Soares MG. Gênero Caesalpinia L. (Caesalpiniaceae): características fitoquímicas e farmacológicas. Molecules. 2012;17(7):7887-902. DOI: https://doi.org/10.3390/molecules17077887
Daenen K, Andries A, Mekahli D, Schepdael AV, Jouret F, Bammens B. Oxidative stress in chronic kidney disease. Pediatr Nephrol. 2019;34;975-91. DOI: https://doi.org/10.1007/s00467-018-4005-4
Singh A, Kukreti R, Saso L, Kukreti S. Oxidative Stress: A key modulator in neurodegenerative diseases. Molecules. 2019;24(8):1583. DOI: https://doi.org/10.3390/molecules24081583
Chiurchiù V, Orlacchio A, Maccarrone M. Is modulation of oxidative stress an answer? The state of the art of redox therapeutic actions in neurodegenerative diseases. Oxid Med Cell Longev. 2016;2016:1-11. DOI: https://doi.org/10.1155/2016/7909380
Elfawy HÁ, Das B. Crosstalk between mitochondrial dysfunction, oxidative stress, and age related neurodegenerative disease: etiologies and therapeutic strategies. Life Sci. 2019:165-84. DOI: https://doi.org/10.1016/j.lfs.2018.12.029
Li M, Wang S, Li X, Kou R, Wang Q, Wang X, ZhaoN, Zeng T, Xie K. Diallyl sulfide treatment protects against acetaminophen-/carbon tetrachloride-induced acute liver injury by inhibiting oxidative stress, inflammation and apoptosis in mice. Toxicol Res. 2019;89(1):67-76. DOI: https://doi.org/10.1039/C8TX00185E
Cristani M, Speciale A, Mancari F, Arcoraci T, Ferrari D, Fratantonio D, Saija A, Cimino F, Trombetta D. Protective activity of an anthocyanin-rich extract from bilberries and black currants on acute acetaminophen-induced hepatotoxicity in rats. Nat Prod Res. 2016;30:2845-9 DOI: https://doi.org/10.1080/14786419.2016.1160235
Kisaoglu A, Ozogul B, Turan MI, Yilmaz I, Demiryilmaz I, Atamanalp SS, Bakan E, Suleyman, H. Damage induced by paracetamol compared with N-acetylcysteine. J Chin Med Assoc. 2014;77:463-8. DOI: https://doi.org/10.1016/j.jcma.2014.01.011
Mazaleuskaya LL, Sangkuhl K, Thorn CF, Fitzgerald GA, Altman RB, Klein TE. PharmGKB summary: pathways of acetaminophen metabolism at the therapeutic versus toxic doses. Pharmacogenet Genomics. 2015;25(8):416- 26. DOI: https://doi.org/10.1097/FPC.0000000000000150
Bian X, Wang S, Liu J, Zhao Y, Li H, Zhang L, Li P. Hepatoprotective effect of chiisanoside against acetaminophen-induced acute liver injury in mice. Nat Prod Res. 2018;33(18):2704-07. DOI: https://doi.org/10.1080/14786419.2018.1460841
Karthivashan G, Arulselvan P, Tan SW, Fakurazi S. The molecular mechanism underlying the hepatoprotective potential of Moringa oleifera leaves extract against acetaminophen induced hepatotoxicity in mice. J Funct Foods. 2015;17:115-26. DOI: https://doi.org/10.1016/j.jff.2015.05.007
Ghasemzadeh A, Jaafar HZ, Rahmat A. Antioxidant activities, total phenolics and flavonoids content in two varieties of Malaysia young ginger (Zingiber officinale Roscoe). Molecules. 2010;15:4324-33. DOI: https://doi.org/10.3390/molecules15064324
Clesceri LS, Greenberg AE, Eaton AD. Standard methods for examination of water and wastewater. 21th ed. Washington: American Public Health Association; 2005
Singleton VL, Orthofer R, Lamuela-Raventós RS. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteau Reagent. Meth Enzymol. 1999;299:152-78. DOI: https://doi.org/10.1016/S0076-6879(99)99017-1
Pauletti PM, Castro-Gamboa I, Silva DH, Young MC, Tomazela DM, Eberlin MN, Bolzani VS. New antioxidant C-glucosylxanthone from the stems of Arrabidaea samydoides. J Nat Prod. 2003;66(10):1384-7. DOI: https://doi.org/10.1021/np030100t
Hostettmann K, Queiros FE, Vieira CP. Princípios ativos de plantas superiores. São Carlos: Ed. UFSCar; 2003.152 p.
Olaleye MT, Rocha BT. Acetaminophen-induced liver damage in mice: Effects of some medicinal plants on the oxidative defense system. Exp Toxicol Pathol. 2008;59:319-27. DOI: https://doi.org/10.1016/j.etp.2007.10.003
Malone MH. The pharmacological evaluation of natural products - general and specific approachs to screening ethnopharmaceuticals. J Ethnopharmacol. 1983;8:127-47. DOI: https://doi.org/10.1016/0378-8741(83)90050-8
Nelson DP, Kiesow LA. Enthalphy of decomposition of hydrogen peroxide by catalase at 25 °C (with molar extinction coefficients of H2 O2 solution in the UV). Anal Biochem. 1972;49(2):474-8. DOI: https://doi.org/10.1016/0003-2697(72)90451-4
Habig WH, Pabst MJ, Jacoby WB. Glutathione S-transferase, the first enzymatic step in mercapturic acid formation. J Biol Chem. 1974;249(22):7130-9. DOI: https://doi.org/10.1016/S0021-9258(19)42083-8
Sedlack J, Lindsay RH. Estimation of total, proteinbound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem. 1968(25):192-205. DOI: https://doi.org/10.1016/0003-2697(68)90092-4
Roe JH. Chemical determination of ascorbic, dehydroascorbic, and diketogulonic acids. Methods Biochem. Anal. 1954;954(1):115-39. DOI: https://doi.org/10.1002/9780470110171.ch5
Buege JA, Aust SD. Microsomal lipid peroxidation. Methods Enzymol. 1978;52(1):302-9. DOI: https://doi.org/10.1016/S0076-6879(78)52032-6
Yan LJ, Traber MG, Packer L. Spectrophotometric method for determination of carbonyls in oxidatively modified apolipoprotein B of human low-density lipoproteins. Anal Biochem. 1995;228(2):349-51. DOI: https://doi.org/10.1006/abio.1995.1362
Bradford MM. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1-2):248-54. DOI: https://doi.org/10.1016/0003-2697(76)90527-3
Roby MH, Sarhan MA, Selim KA, Khalel KI. Evaluation of antioxidant activity, total phenols and phenolic compounds in thyme (Thymus vulgaris L.), sage (Salvia officinalis L.), and marjoram (Origanum majorana L.) extracts. Ind Crops Prod. 2013;43:827-31. DOI: https://doi.org/10.1016/j.indcrop.2012.08.029
Sousa CM, Silva HR, Vieira-Jr GM, Ayres MC, Costa CL, Araújo DS, Cavalcante LC, Barros ED, Araújo PB, Brandão MS, Chaves MH. Fenóis totais e atividade antioxidante de cinco plantas medicinais. Quím Nova. 2007;30:351-5. DOI: https://doi.org/10.1590/S0100-40422007000200021
Pessuto MB, Costa IC, Souza AB, Nicoli FM, Mello JCP, Petereit F, Luftmann H. 2009. Atividade antioxidante de extratos e taninos condensados das folhas de Maytenus ilicifolia Mart. ex Reiss. Quím Nova. 2009;32(2):412-16. DOI: https://doi.org/10.1590/S0100-40422009000200027
Serrano J, Puupponen-Pimi R, Dauer A, Aura AM, Saura-Calixto F. Tannins: current knowledge of food sources, intake, bioavailability and biological effects. Mol Nutr Food Res. 2009. DOI: https://doi.org/10.1002/mnfr.200900039
Basu A, Penugonda K. Pomegranate juice: a hearthealthy fruit juice. Nutr Rev. 2009;67:49-56. DOI: https://doi.org/10.1111/j.1753-4887.2008.00133.x
Rahmatullah M, Ferdausi D, Mollik AH, Jahan R, Chowdhury MH, Haque WMA. Survey of medicinal plants used by Kavirajes of Chalna area, Khulna district, Bangladesh. Afr J Tradit Complement Altern Med. 2010;7(2):91-7. DOI: https://doi.org/10.4314/ajtcam.v7i2.50859
Santos SL, Alves HS, Barros KB, Pessoa CV. Use of medicinal plants by elders of a philanthropic institution. Rev Bras Pesq Ciênc Saúde. 2017;4(2):71-5.
Souza CM, Brandão DO, Silva MS, Palmeira AC, Simões MO, Medeiros AC. Utilização de plantas medicinais com atividade antimicrobiana por usuários do serviço público de saúde em Campina Grande – Paraíba. Rev Bras Pl Med. 2013;15(2):188-93. DOI: https://doi.org/10.1590/S1516-05722013000200004
Souza CC, Magalhães LM, Costa TB, Bicudo RC, Sinhorin VD, Sinhorin AP. Identificação de flavonoides por LC-MS / MS a partir de extratos de folhas de Caesalpinia ferrea Mart. e avaliação da reversão do estresse oxidativo em camundongos. Rev Bras Pl Med. 2017;19(4):610-8.
Ricci A, Olejar KJ, Parpinello GP, Mattioli AU, Teslić N, Kilmartin PA, Versari A. Antioxidant activity of commercial food grade tannins exemplified in a wine model. Food Addit Contam: Part A. 2016;33(12):1761-74. DOI: https://doi.org/10.1080/19440049.2016.1241901
Marín L, Miguélez EM, Villar CJ, Lombó F. Bioavailability of dietary polyphenols and gut microbiota metabolism: antimicrobial properties. Biomed Res Int. 2015. DOI: https://doi.org/10.1155/2015/905215
Simões CM, Schenkel EP, Mello JC, Menta LA, Petrovick PR. Farmacognosia da planta ao medicamento. 5th ed. Porto Alegre: Ed. UFRGS; 2003.
Jesus WM, Cunha TN. Estudos das propriedades farmacológicas da espinheirasanta (Mytenus iliciofolia Mart. Ex Reissek) e de suas espécies adulterantes. Rev Saúde Desenvolv. 2012;1(1):20-4.
Thompson MA, Collins PB. Handbook on gallic acid: natural occurrences, antioxidant properties and health implications. 1st ed. New York: Nova Science Publishers; 2013.
Yang YH, Wang Z, Zheng J, Wang R. Protective effects of gallic acid against spinal cord injury-induced oxidative stress. Mol Med Rep. 2015;12(2):3017-24. DOI: https://doi.org/10.3892/mmr.2015.3738
Sarjit A, Wang Y, Dykes GA. Antimicrobial activity of gallic acid against thermophilic Campylobacter is strain specific and associated with a loss of calcium ions. Food Microbiol. 2015;46:227-33. DOI: https://doi.org/10.1016/j.fm.2014.08.002
Hseua YC, Chen SC, Lin WH, Hung DZ, Lin MK. Kuo YH, Wang MT, Cho HJ, Wang L, Yang HL. Toona sinensis (leaf extracts) inhibit vascular endothelial growth factor (VEGF)-induced angiogenesis in vascular endothelial cells. J Ethnopharmacol. 2011;134:111-21. DOI: https://doi.org/10.1016/j.jep.2010.11.058
Zeb A. Ellagic acid in suppressing in vivo and in vitro oxidative stresses. Mol Cell Biochem. 2018;448:27-41. DOI: https://doi.org/10.1007/s11010-018-3310-3
Izzo S, Naponelli V, Bettuzzi S. Flavonoids as epigenetic modulators for prostate cancer prevention. Nutrients. 2020;12:1-24. DOI: https://doi.org/10.3390/nu12041010
Costea T, Nagy P, Ganea C, Szöllősi J, Mocanu MM. Molecular mechanisms and bioavailability of polyphenols in prostate cancer. Int J Mol Sci. 2019;20(5):1062. DOI: https://doi.org/10.3390/ijms20051062
Grigoras AG. Catalase immobilization - a review. Biochem Engineering J. 2017;117:1-20. DOI: https://doi.org/10.1016/j.bej.2016.10.021
Glorieux C, Zamocky M, Sandoval JM, Verrax J, Calderon PB. Regulation of catalase expression in healthy and cancerous cells. Free Rad Biol Med. 2015;87:84-97. DOI: https://doi.org/10.1016/j.freeradbiomed.2015.06.017
Jaeschke H, Ramachandran A. Mechanisms and pathophysiological significance of sterile inflammation during acetaminophen hepatotoxicity. Food Chem Toxicol. 2020;138:111240. DOI: https://doi.org/10.1016/j.fct.2020.111240
Blieden M, Paramore, LC, Shah D., Ben-Joseph R. A perspective on the epidemiology of acetaminophen exposure and toxicity in the United States. Expert Rev Clin Pharmacol. 2014;7:341-8. DOI: https://doi.org/10.1586/17512433.2014.904744
Lancaster EM, Hiatt JR, Zarrinpar A. Acetaminophen hepatotoxicity: na updated review. Arch Toxicol. 2015;89(2):193-9. DOI: https://doi.org/10.1007/s00204-014-1432-2
Khodayar MJ, Kalantari H, Khorsandi L, Rashno M, Zeidooni L. Betaine protects mice against acetaminophen hepatotoxicity possibly via mitochondrial complex II and glutathione availability. Biomed Pharmacother. 2018;103:1436-45. DOI: https://doi.org/10.1016/j.biopha.2018.04.154
Hinson JA, Roberts DW, James LP. Mechanisms of acetaminophen-induced livernecrosis. Handb Exp Pharmacol. 2010;196:369-405. DOI: https://doi.org/10.1007/978-3-642-00663-0_12
Ajboye TO, Yakubu MT, Salau AK, Oladiji AT, Akanji MA, Okogun JI. Antioxidant and drug detoxification potential of aqueous extract of Annona senegalensis leaves in carbon tetrachloride-induced hepatocellular damage, Pharm Biol. 2010;48:1361-70. DOI: https://doi.org/10.3109/13880209.2010.483247
Hasanein P, Sharifi M. Effects of rosmarinic acid on acetaminophen-induced hepatotoxicity in male Wistar rats. Pharm Biol. 2017;55(1):1809-16. DOI: https://doi.org/10.1080/13880209.2017.1331248
Guan G, Lan S. Implications of antioxidant systems in inflammatory bowel disease. Biomed Res Int. 2018:1-7. DOI: https://doi.org/10.1155/2018/1290179
Driessen MD, Mues S, Vennemann A, Hellack B, Bannuscher A, Vimalakanthan V, Riebeling C, Ossig R, Wiemann M, Schnekenburger J, Kuhlbusch TAJ, Renard B, Luch A, Haase A. Proteomic analysis of protein carbonylation: a useful tool to unravel nanoparticle toxicity mechanisms. Part Fibre Toxicol. 2015;12(36):1-18. DOI: https://doi.org/10.1186/s12989-015-0108-2
Sidonia B, Horatiu R, Vlad L, Francisc, D, Ciprian O, Cosmin P, Liviu O, Sanda A. Hypothermia effects on liver and kidney oxidative stress parameters in an experimental model of sepsis in rats. J Vet Res. 2020;64(1):187-95. DOI: https://doi.org/10.2478/jvetres-2020-0004
Priyadarsini KI, Khopde SM, Kumar SS, Mohan H. Free radical studies of ellagic acid, a natural phenolic antioxidant. J Agr Food Chem. 2002;50(7):2200-6. DOI: https://doi.org/10.1021/jf011275g
Suke SG, Shukla A, Mundhada D, Banerjee BD, Mediratta PK. Effect of phosphamidon on cognition and oxidative stress and its modulation by ascorbic acid and 4-chlorodiazepam in rats. Pharmacol Biochem Behav. 2013;103(3):637-42. DOI: https://doi.org/10.1016/j.pbb.2012.10.015
Magalhães LM, Sinhorin VDG, Souza CCP, Bicudo RC, Sinhorin AP. Antioxidant activity and flavonoids identification by LC-MS/MS analysis in leaf extract from Trattinnickia rhoifolia willd. Front J Soc Technol Environ Sci. 2019;8(2):13-34. DOI: https://doi.org/10.21664/2238-8869.2019v8i2.p13-34
Hira K, Sultana V, Khatoon N, Ara J, EhteshamulHaque S. Protective effect of crude sulphated polysaccharides from Sargassum swartzii (Turn.) C.Ag. against acetaminophen induced liver toxicity in rats. Clin Phytoscience. 2019;5(14):1-8. DOI: https://doi.org/10.1186/s40816-019-0108-0
Saenthaweesuk S, Munkong N, Parklak W, Thaeomor A, Chaisakul J, Somparn N. Hepatoprotective and antioxidant effects of Cymbopogon citratus stapf (Lemon grass) extract in paracetamol induced hepatotoxicity in rats. Trop J Pharm Res. 2017;16(1):101-7. DOI: https://doi.org/10.4314/tjpr.v16i1.13
Sobeha M, Mahmoud MF, Abdelfattah MA, Assem HA, El-Shazly M, Wink M. Hepatoprotective and hypoglycemic effects of a tannin rich extract from Ximenia americana var. caffra root. Phytomedicine. 2017;33:36-42. DOI: https://doi.org/10.1016/j.phymed.2017.07.003
Krithika R, Verma RJ. Solanum nigrum confers protection against CCl4-induced experimental hepatotoxicity by increasing hepatic protein synthesis and regulation of energy metabolism. Clin Phytoscience. 2019;5:1-8. DOI: https://doi.org/10.1186/s40816-018-0096-5
Arapitsas P. Hydrolyzable tannin analysis in food. Food Chem. 2012;135(3):1708-17. DOI: https://doi.org/10.1016/j.foodchem.2012.05.096
Sieniawska E, Baj T. Pharmacognosy: Fundamentals, Applications and Strategies. 1st ed. London: Academic Press; 2017: Chapter 10, Tannins. p. 199-232. DOI: https://doi.org/10.1016/B978-0-12-802104-0.00010-X
Berawi KN, Bimandama MA. The effect of giving extract etanol of kepok banana peel (Musa acuminata) toward total cholesterol level on male mice (Mus musculus L.) strain deutschland-denken-yoken (ddy) Obese. Biomed Pharmacol J. 2018;11(2):769-74. DOI: https://doi.org/10.13005/bpj/1431
He M, Zhang S, Jiao Y, Lin X, Huang J, Chen C, Chen Z, Huang R. Effects and mechanisms of rifampin on hepatotoxicity of acetaminophen in mice. Food Chem Toxicol. 2012;50;3142–3149. DOI: https://doi.org/10.1016/j.fct.2012.06.020
Krata N, Zagozdzon R, Foroncewicz B, Mucha K. Oxidative stress in kidney diseases: the cause or the consequence. Arch Immunol Ther Exp (Warsz). 2018;66(3):211-20. DOI: https://doi.org/10.1007/s00005-017-0496-0
Liu M, Sun Y, Xu M, Yu X, Zhang Y, Huang S, Ding G, Zhang A, Jia Z. Role of mitochondrial oxidative stress in modulating the expressions of aquaporins in obstructive kidney disease. Am J Physiol Renal Physiol. 2018;314(4):658-66. DOI: https://doi.org/10.1152/ajprenal.00234.2017
Haute GV, Caberlon E, Squizani E, Mesquita FC, Pedrazza L, Martha BA, Melo DA, Cassel E, Czepielewski RS, Bitencourt S, Goettert MI, Oliveira JR. Gallic acid reduces the effect of LPS on apoptosis and inhibits the formation of neutrophil extracellular traps. Toxicol in Vitro. 2015;30:309-17. DOI: https://doi.org/10.1016/j.tiv.2015.10.005
Yoon CH, Chung SJ, Lee SW, Park YB, Lee SK, Park MC. Allic acid, a natural polyphenolic acid, induces apoptosis and inhibits proinflammatory gene expressions in rheumatoid arthritis fibroblast-like synoviocytes. Joint Bone Spine. 2013;80(3):274-9. DOI: https://doi.org/10.1016/j.jbspin.2012.08.010
Pereira DL, Cunha AP, Cardoso CR, Rocha CQ, Vilegas W, Sinhorin AP, Sinhorin VD. Antioxidant and hepatoprotective effects of ethanolic and ethyl acetate stem bark extracts of Copaifera multijuga (Fabaceae) in mice. Acta Amazon. 2018;48(4):347-57. DOI: https://doi.org/10.1590/1809-4392201704473
Garcia-Mesa Y, Colie S, Corpas R, Cristofol R, Comellas F, Nebreda AR, Gimenez-Llort L, Sanfeliu C. Oxidative stress is a central target for physical exercise neuroprotection against pathological brain. Aging J Gerontol A Biol Sci Med Sci. 2016;71:40-9. DOI: https://doi.org/10.1093/gerona/glv005
Viswanathan G, Dan VM, Radhakrishnan N, Nair AS, Nair AP, Baby S. Protection of mouse brain from paracetamol-induced stress by Centella asiatica methanol extract. J Ethnopharmacol, 2019;236:474-83. DOI: https://doi.org/10.1016/j.jep.2019.03.017
Lalert L, Ji-Au W, Srikam S, Chotipinit T, Sanguanrungsirikul S, Srikiatkhachorn A, Grand SM. Alterations in synaptic plasticity and oxidative stress following long-term paracetamol treatment in rat brain. Neurotox Res. 2020;37(2):455-68. DOI: https://doi.org/10.1007/s12640-019-00090-2
Mansouri MT, Farbood Y, Sameri MJ, Sarkaki A, Naghizadeh B, Rafeirad M. Neuroprotective effects of oral gallic acid against oxidative stress induced by 6-hydroxydopamine in rats. Food Chemi. 2013;138;1028– 1033. DOI: https://doi.org/10.1016/j.foodchem.2012.11.022
Saibabu V, Fatima Z, Khan LA, Hameed S. Therapeutic potential of dietary phenolic acids. Adv Pharmacol Sciences. 2015;823539. DOI: https://doi.org/10.1155/2015/823539
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2023 Scientia Medica
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Direitos Autorais
A submissão de originais para a Scientia Medica implica na transferência, pelos autores, dos direitos de publicação. Os direitos autorais para os artigos publicados nesta revista são do autor, com direitos da revista sobre a primeira publicação. Os autores somente poderão utilizar os mesmos resultados em outras publicações indicando claramente a Scientia Medica como o meio da publicação original.
Licença Creative Commons
Exceto onde especificado diferentemente, aplicam-se à matéria publicada neste periódico os termos de uma licença Creative Commons Atribuição 4.0 Internacional, que permite o uso irrestrito, a distribuição e a reprodução em qualquer meio desde que a publicação original seja corretamente citada.