Antioxidant potential of Carica papaya Linn (Caricaceae) leaf extract in mice with cyclophosphamide induced oxidative stress

Keywords: antimutagenicity, antioxidant defense, ethnobotany, secondary metabolites, erythropoiesis

Abstract

AIMS: This study aimed to investigate the effects of crude extract of Carica papaya leaves on oxidative stress in mice induced by cyclophosphamide, as well as phytochemical profile characterization of this extract.
METHODS: The male Swiss mice received 15 days of treatment with the extract (500 mg kg-1, via gavage) and intraperitoneal injection of cyclophosphamide (75 mg kg-1) or saline (0.9%) on the 15th day. After 24 h the last treatment, the animals were anesthetized for blood withdrawal, sacrificed and removal of the organs for analyses (liver, kidney and heart). In the biochemical tests were determined: hematological parameters in blood, aminotransferases, alkaline phosphatase, glucose and total cholesterol dosages in plasma, enzymatic and non-enzymatic antioxidants and lipid damage marker were evaluated in different tissues, besides genotoxic and histopathological analyzes.
RESULTS: In the extract of Carica papaya leaves, the flavonoids quercetin-3β-D-glucoside and rutin were identified, besides present positive results for alkaloids, saponins and tannins. This extract increased the activity of glutathione-S-transferase and catalase enzymes in the liver and reduced the levels of reduced glutathione in the kidneys and hematocrit levels, red cell count, and hemoglobin. It promoted the decrease of the reactive species of thiobarbituric acid (TBARS) in the kidneys and the activity of enzyme aspartate aminotransferase in the plasma and was antimutagenic in the micronucleus test.
CONCLUSIONS: The study showed that extract of Carica papaya was beneficial against oxidative events and prevented DNA damage. The extract also showed hepatotoxicity, therefore prolonged infusion of papaya leaves is not advisable.

Downloads

Download data is not yet available.

Author Biographies

Tatiane Cordeiro Luiz, Federal University of Mato Grosso, Campus of Sinop, Mato Grosso, Brazil

MD in Environmental Sciences from the Federal University of Mato Grosso (UFMT, Sinop, MT, Brazil), professor of the state (Sinop, MT, Brazil).

Ana Paula Simões da Cunha, Federal University of Mato Grosso, Campus of Sinop, Mato Grosso, Brazil

Master’s Degree student in Environmental Sciences postgraduate program at the Federal University of Mato Grosso (UFMT, Sinop, MT, Brazil).

Danilo Henrique Aguiar, Federal University of Mato Grosso, Campus of Sinop, Mato Grosso, Brazil

PhD in Cellular and Structural Biology from the State University of Campinas (UNICAMP, Campinas, SP, Brazil), Professor at the Federal University of Mato Grosso (UFMT, Sinop, MT, Brazil).

Marina Mariko Sugui, Federal University of Mato Grosso, Campus of Sinop, Mato Grosso, Brazil

PhD in Pathology from São Paulo State University Júlio de Mesquita Filho (UNESP, Botucatu, SP, Brazil), Professor and collaborating professor of the Environmental Sciences post graduate program at the Federal University of Mato Grosso (UFMT, Sinop, MT, Brazil).

Rogério de Campos Bicudo, Empresa Brasileira de Pesquisas Agropecuárias (EMBRAPA) Agrossilvipastoril, Sinop, MT, Brazil

PhD in Analytical Chemistry from São Paulo University (USP, São Carlos, SP, Brasil), Analyst A at Embrapa Agrossilvipastoril in the laboratory management area (Embrapa, Sinop, MT, Brasil).

Adilson Paulo Sinhorin, Federal University of Mato Grosso, Campus of Sinop, Mato Grosso, Brazil

PhD in Chemistry from the Federal University of Santa Maria (UFSM, Santa Maria, RS, Brazil), Permanent Professor of the Environmental Sciences post graduate program at the Federal University of Mato Grosso (UFMT, Sinop, MT, Brazil).

Valéria Dornelles Gindri Sinhorin, Federal University of Mato Grosso, Campus of Sinop, Mato Grosso, Brazil

PhD in Toxicological Biochemistry from the Federal University of Santa Maria (UFSM, Santa Maria, RS, Brazil), Permanent Professor of the Environmental Sciences post graduate program at the Federal University of Mato Grosso (UFMT, Sinop, MT, Brazil).

References

Firuzi O, Miri R, Tavakkoli M, Saso L. Antioxidant therapy: Current status and future prospects. Curr Med Chem. 2011;18:3871-88. https://doi.org/10.2174/092986711803414368.

Valko M, Leibfritz D, Jan Moncol J, Cronin MTD, M. Mazur M, Telser J. Review: free. radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2011;39:44-84. https://doi.org/10.1016/j.biocel.2006.07.001.

Popov D. Protein S-glutathionylation: from current basics to targeted modifications. Arch Physiol Biochem. 2014;12:1-8. https://doi.org/10.3109/13813455.2014.944544.

Poprac P, Jomova K, Simunkova M, Kollar V, Rhodes CJ, Valko M. Review: targeting free radicals in oxidative stress-related human diseases. Trends Pharmacol Sci. 2017;38:592-607. https://doi.org/10.1016/j.tips.2017.04.005.

Kallenberg CG. Pro: Cyclophosphamide in lupus nephritis. Nephrol Dial Transplant. 2016;31:1047-52. https://doi.org/10.1093/ndt/gfw069

Sun Y, Ito S, Nishio N, Tanaka Y, Chen N, Liu L, Isobel KI. Enhancement of the acrolein-induced production of reactive oxygen species and lung injury by Gadd 34. Oxid Med Cell Longev. 2015;2015:170309. https://doi.org/10.1155/2015/170309.

Embrapa. Mamão - O produtor pergunta, a Embrapa responde. 500 perguntas 500 respostas. 2nd ed. Brasília: Embrapa Mandioca e Fruticultura; 2013.

Imaga NOA, Gbenle GO, Okochi VI, Akanbi SO, Edeoghon SO, Oibochie, Kehinde V, Bamiro SB. Antisickling property of Carica papaya leaf extract. Afr J Biochem Res. 2009;3(4):102-06.

Tan SA, Ramos S, Martín MA, Mateos R, Harvey M, Ramanathan S, Najimudin N, Alam M, Bravo L, Goya L. Protective effects of papaya extracts on tert-butyl hydroperoxide mediated oxidative injury to human liver cells (An in-vitro study). Free Rad Antioxid. 2012;2(3):10- 19. https://doi.org/10.1155/2015/170309.

Hasimun P, Suwendar GI, Ernasari. Analgetic Activity of Papaya (Carica papaya L.) leaves extract. Procedia Chem. 2014;13:147-49. https://doi.org/10.1155/2015/170309.

Zunjar V, Dash RP, Jivrajani M, Trivedi B, Nivsarkar M. Antithrombocytopenic activity of carpaine and alkaloidal extract of Carica papaya Linn leaves in busulfan induced thrombocytopenic Wistar rats. J Ethnopharmacol. 2016;181:20-25. https://doi.org/10.1016/j.jep.2016.01.035.

Pandey S, Walpoleb C, Cabota PJ, Shawa PN, Batrab J, Hewavitharana AK. Selective anti-proliferative activities of Carica papaya leaf juice extracts against prostate cancer. Biomed Pharmacother. 2017;89:515-23.

https://doi.org/10.1016/j.biopha.2017.02.050.

Indran M, Mahmood AA, Kuppusamy UR. Protective effect of Carica papaya L. leaf extract against alcohol induced acute gastric damage and blood oxidative stress in rats. West Indian Med. 2008;57(4):323-26.

Sá PGS, Guimarães AL, Oliveira AP, Siqueira Filho JA, Fontana AP, Damasceno PKF, Branco CRC, Branco A, Almeida JRG. Fenóis totais, flavonoides totais e atividade antioxidante de selaginella convoluta (arn.) spring (Selaginellaceae). Rev. Ciênc Farm Básica Apl. 2012;33:561-66.

Sousa CMM, Silva HR, Vieira GM, Ayres MCC, Costa CLS, Araújo DS, Cavalcenti, LCD, Barros EDS, Araújo PBM, Brandão MS, Chaves MH. Fenóis totais e atividade antioxidante de cinco plantas medicinais. Quim Nova. 2007;30(2):351-55. https://doi.org/10.1590/S0100-40422007000200021.

Castro MS, Pinheiro CCS, Marinho HA. Screeningfitoquímico e físico-químico dos extratos da CurcumazerumbetRoscoe (Zingiberaceae) do Amazonas para a produção de alimentos terapêuticos. Biota Amazônica. 2017;6-11.

Duan K, Yuan Z, Guo W, Meng Y, Cui Y, Kong D, Zhang L. LC-MS/MS determination and pharmacokinetic study of five flavone components after solvent extraction/acid hydrolysis in rat plasma after oral administration of Verbena officinalis L. extract. J Ethnopharmacol. 2011;135(2):201-08. https://doi.org/10.1016/j.jep.2011.01.002.

Oboh G, Olabiyi AA, Akinyemi AJ. Cyclophosphamide- induced oxidative stress in brain: protective effect of hot short pepper (Capsicum frutescens L. var. abbreviatum). Exp Toxicol Pathol. 2010;62(3):227-33. https://doi.org/10.1016/j.etp.2009.03.011.

Misra HP, Fridovich I. The role of superoxide anion in the auto-oxidation o epinephrine and a simple assay for

superoxide dismutase. J Biol Chem. 1972;247(10):3170-75.

Nelson DP, Kiesow LA. Enthalphy of decomposition of hydrogen peroxide by catalase at 25 °C (with molar extinction coefficients of H2O2 solution in the UV). Anal Biochem. 1972;49(2),474-78. https://doi.org/10.1016/0003-2697(72)90451-4.

Habig WH, Pabst MJ, Jacoby WB. Glutathione S-transferase, the first enzymatic step in mercapturic acid formation. J Biol Chem. 1974;249(22):7130-39.

Sedlack J, Lindsay RH. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem. 1968;25:192-205. https://doi.org/10.1016/0003-2697(68)90092-4.

Buege JA, Aust SD. Microsomal lipid peroxidation methods. Enzymol. 1978;52:302-309. https://doi.org/10.1016/S0076-6879(78)52032-6.

Bradford MM. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the

principle of protein-dye binding. Anal Biochem. 1976;72:248-54. https://doi.org/10.1016/0003-2697(76)90527-3.

MacGregor JT, Heddle JA, Hit M, Margolin BH, Ramel C, Salamone MF, Tice RR, Wild D. Guidelines for the conduct of micronucleus assays in mammalian bone marrow erythrocytes. Mutat Res 1987;189(12):103-12. https://doi.org/10.1016/0165-1218(87)90016-4.

Manoharan K, Banerjee MR. β-Carotene reduces sister chromatid exchange induce chemical carcinogens in mouse mammary cells in organ culture. Cell Biol. Int. Rep. 1985;9:783-89. https://doi.org/10.1016/0309-1651(85)90096-7.

Waters MD, Brady AL, Stack HF, Broxkman HE. Antimutagenic profiles for some model compounds. Mutat Res. 1990;238:57-85. https://doi.org/10.1016/0165-1110(90)90039-E.

Pereira BCA. Teste estatístico para comparar proporções em problemas de citogenética. In: Rabello-Gay MN, Rodrigues MAR, Monteleone Neto R, organizadores, Mutagênese, carcinogênese e teratogênese: métodos e critérios de avaliação. Soc Bras Gene. 1991;113-21.

Kapiszewska M, Soltys E, Visioli F, Cierniak A, Zajac G. The protective ability of the Mediterranean plant extracts against the oxidative DNA damage. The role of the radical oxygen species and the polyphenol content. J Physiol Pharmacol. 2005;56:183-97.

Souza M P, Bataglion GA, Silva FM, Almeida RA, Paz WH, Nobre TA, Marinho JV, Salvador MJ, Fidelis CH, Acho LD, Souza AD, Nunomura RC, Eberlin M N, Lima E S, Koolen HH. Phenolic and aroma compositions of pitomba fruit (Talisia esculenta Radlk.) assessed by LC-MS/ MS and HS-SPME/GC-MS. Food Res Int. 2016;83:87-94. https://doi.org/10.1016/j.foodres.2016.01.031.

Zhou J, Qi Y, Ritho J, Zhang Y, Zheng X, Wu L, Li Y, Sun L. Flavonoid glycosides as floral origin markers to discriminate of unifloral bee pollen by LC-MS/MS. Food Control. 2015;57:54-61. https://doi.org/10.1016/j.foodcont.2015.03.035.

Simirgiotis M J, Quispe C, Areche C, Sepúlveda B. Phenolic compounds in Chilean Mistletoe (Quintral, Tristerixtetrandus) analyzed by UHPLC-Q/Orbitrap/MS/MS and its antioxidant properties. Molecules. 2016;21(3):245. https://doi.org/10.3390/molecules21030245.

Pandit A, Sachdeva T, Bafna P. Ameliorative effect of leaves of Carica papaya in ethanol and antitubercular drug induced hepatotoxicity. Br J Pharmacol. 2013;3(4):648-661. https://doi.org/10.9734/BJPR/2013/4517.

Jnaneshwaria S, Hemshekhara M, Santhosha M S, Sunithaa K, Thusharaa R, Thirunavukkarasub C, Kemparajua K, Girish K S. Crocin, a dietary colorant mitigates cyclophosphamide-induced organ toxicity by modulating antioxidant status and inflammatory cytokines. J Pharm Pharmacol. 2013;65(4):604-14. https://doi.org/10.1111/jphp.12016.

Yu Q, Nie SP, Wang JQ, Liu XZ, Yin PF, Huang DF, Li WJ, Gong DM, Xie MY. Chemoprotective effects of Ganoderma atrum polysaccharide in cyclophosphamide- induced mice. Int J Biol Macromol. 2014;64:395-401. https://doi.org/10.1016/j.ijbiomac.2013.12.029.

Abraham P, Isaac B. The effects of oral glutamine on cyclophosphamide-induced nephrotoxicity in rats. Hum Exp Toxicol. 2011;30(7):616-23. https://doi.org/10.1177/0960327110376552.

Zarei M, Shivanandappa T. Amelioration of cyclophosphamide- induced hepatotoxicity by the root extract of Decalepishamiltonii in mice. Food Chem Toxicol. 2013;57:179-84. https://doi.org/10.1016/j.fct.2013.03.028.

Avci H, Epikmen ET, Ipek E, Tunca R, Birincioglu SS, Aksit H, Sekkin S, Akkoç AN, Boyacioglu M. Protective effects of silymarin and curcumin on cyclophosphamide-induced cardiotoxicity. Exp Toxicol Pathol. 2017;69(5):317-27. https://doi.org/10.1016/j.etp.2017.02.002.

Mansour HH, El kiki SM, Hasan HF. Protective effect of N-acetylcysteine on cyclophosphamide-induced cardiotoxicity in rats. Environ Toxicol Pharmacol. 2015;40(2):417-22. https://doi.org/10.1016/j.etap.2015.07.013.

Hang JH. Modification and inactivation of Cu,Zn-superoxide dismutase by the lipid peroxidation product acrolein. BMB Rep. 2013;46(11):555-60. https://doi.org/10.5483/BMBRep.2013.46.11.138.

Moghe A, Ghare S, Lamoreau B, Mohammad M, Barve S, McClain C, Joshi-Barve S. Molecular mechanisms of acrolein toxicity: Relevance to human disease. Toxicol Sci. 2015;143:242-55. https://doi.org/10.1093/toxsci/kfu233.

Guizani N, Waly M, Ali A, Al-Saidi G, Singh V, Bhatt N, Rahman M S. Papaya epicarp extract protects against hydrogen peroxide-induced oxidative stress in human SH-SY5Y neuronal cells. Exp Biol Med. 2011;236(10):1205-10. https://doi.org/10.1258/ebm.2011.011031.

Oboh G, Olabiyi AA, Akinyemi AJ. Inhibitory effect of aqueous extract of different parts of unripe pawpaw (Carica papaya) fruit on Fe2+ induced oxidative stress in rat pancreas in vitro. Pharm Biol. 2013;51(9):1165-74. https://doi.org/10.3109/13880209.2013.782321.

Sadek MK. Antioxidant and immunostimulant effect of Carica papaya Linn aqueous extract in acrylamide intoxicated rats. Acta Infor Med. 2012;20(3):180-185. https://doi.org/10.5455/aim.2012.20.180-185.

Fahmy SR, Amien A I, Abd-Elgleel FM, Elaskalany SM. Antihepatotoxic efficacy of Mangifera indica L. polysaccharides against cyclophosphamide in rats. Chem Biol Interact. 2016;244(25):113-20. https://doi.org/10.1016/j.cbi.2015.11.009.

Mazzeti AP, Fiorile MC, Primavera A, Lo Bello M. Review: Glutathione transferases and neurodegenerative diseases. Neurochem Int. 2015;82:10-8. https://doi.org/10.1016/j.neuint.2015.01.008.

Nakamura Y, Morimitsu Y, Uzua T, Ohigashi H, Murakami A, Naito Y, Nakagawa Y, Osawa T, Uchida K. A glutathione S-transferase inducer from papaya: rapid screening, identification and structure-activity relationship of isothiocyanates. Cancer Lett. 2000;157(2):193-200. https://doi.org/10.1016/S0304-3835(00)00487-0.

Huang J, Wang S, Zhu M, Chen J, Zhu X. Effects of Genistein, Apigenin, Quercetin, Rutin and Astilbin on serum uric acid levels and xanthine oxidase activities in normal and hyperuricemic mice. Food Chem Toxicol. 2011;49:1943-47. https://doi.org/10.1016/j.fct.2011.04.029.

Shanmugam S, Thangaraj P, Lima BS, Chandran R, Souza de Araújo AA, Narain N, Serafini MR, Júnior LJQ. Effects of luteolin and quercetin 3-β-D-Glucoside identified from Passiflora subpeltata leaves against acetaminophen induced hepatotoxicity in rats. Biomed Pharmacother 2016;83:1278-85. https://doi.org/10.1016/j.biopha.2016.08.044.

Caglayan C, Kandemir FM, Darendelioğlu E, Yıldırım S, Kucukler S, Dortbudak MB. Rutin ameliorates mercuric chloride-induced hepatotoxicity in rats viainterfering with oxidative stress, inflammation and apoptosis. J Trace Elements Med Biol. 2019;56:60-8. https://doi.org/10.1016/j.jtemb.2019.07.011.

Khan JA, Shahdad S, Makhdoomi MA, Hamid S, Bhat GM, Jan Y, Nazir S, Bashir Z, Banoo S. Effect of cyclophosphamide on the microanatomy of liver of albino rats. Int. J Res Med Sci. 2014;2(4):1466-69. https://doi.org/10.5455/2320-6012.ijrms20141141.

Gong P, Chen F X, Wang L, Wang J, Jin S, Ma Y M. Protective effects of blueberries (Vaccinium corymbosumL.) extract against cadmium-induced hepatotoxicity in mice. Environ Toxicol Pharmacol. 2014;37(3):1015-27. https://doi.org/10.1016/j.etap.2014.03.017.

Basu A, Bhattacharjee, A, Samanta A, Bhattacharya S. Prevention of cyclophosphamide-induced hepatotoxicity

and genotoxicity: Effect of an cysteine based oxovanadium (IV) complex on oxidative stress and DNA damage. Environ Toxicol Pharmacol. 2015;40(3):747-57. https://doi.org/10.1016/j.etap.2015.08.035.

Bhatt L, Sebastian B, Joshi V. Mangiferin protects rat myocardial tissue against cyclophosphamide induced cardiotoxicity. J. Ayurveda Integr. Med. 2017;8(2):62-67. https://doi.org/10.1016/j.jaim.2017.04.006.

Nafees S, Rashid S, Ali N, Hasan SK, Sultana S. Rutin ameliorates cyclophosphamide induced oxidative stress and inflammation in Wistar rats: Role of NFjB/ MAPK pathway. Chem Biol Interact. 2015;231(25):98-107. https://doi.org/10.1016/j.cbi.2015.02.021.

Mohamed MR, Emam MA, Hassan NS, Mogadem AI. Umbelliferone and daphnetin ameliorate carbon tetrachloride-induced hepatotoxicity in rats via nuclear factor erythroid 2-related factor 2-mediated heme oxygenase-1 expression.Environ Toxicol Pharmacol. 2014;38(2):531-41. https://doi.org/10.1016/j.etap.2014.08.004.

Sheikh N, Younas N, Akhtar T. Effect of Carica papaya leaf formulation on Hematology and Serology of normal rat. Biol Pakistan. 2014;60(1):139-42.

Li N, Xia Q, Ruan J, Fu PP, Lin G. Hepatotoxicity and Tumorigenicity Induced by Metabolic. Activation

of Pyrrolizidine Alkaloids in Herbs. Current Drug Metabolism. 2011;12(9):823-34. https://doi.org/10.2174/138920011797470119.

Zunjar V, Mammen D, Trivedi B M, Daniel M. 2011. Pharmacognostic, Physicochemical and Phytochemical Studies on Carica papaya Linn. Leaves. Pharmacog J. 2011;20(3):5-8. https://doi.org/10.5530/pj.2011.20.2.

Ismail Z, Halim S Z, Abdullah NR, Afzan A, Rashid BAA, Jantan I. Safety Evaluation of Oral Toxicity of Carica papaya Linn. Leaves: A Subchronic Toxicity Study in Sprague Dawley Rats. Evid Based Complement Altern Med. 2014;e741470. https://doi.org/10.1155/2014/741470.

Kufe DW, Pollock RD, Weichselbaum RR, Bast RC, Gansler TS, Holland JF, Frei E, editors. Holland-Frei Cancer Medicine. 6th ed. New York: BC Decker; 2003.

Molyneux G, Andrews M, Sones W, York M, Barnett A, Quirk E, Yeung W, Turton J. Haemotoxicity of busulphan, doxorubicin, cisplatin and cyclophosphamide in the female BALB/c mouse using a brief regimen of drug administration. Cell Biol Toxicol. 2011;27(1):13-40. https://doi.org/10.1007/s10565-010-9167-1.

Li W, Zhao Y, Li X. Effect of Zishenshengxue capsule on myelosuppression in mice induced by Cyclophosphamide. J Trad Chinese Med. 2013;33(2) (2013):233-237. https://doi.org/10.1016/S0254-6272(13)60131-4.

Song Y, Zhang C, Wang C, Zhao L, Wang Z, Dai Z, Lin S, Kang H, Xiaobin M. Ferulic acid against cyclophosphamide-induced heart toxicity in mice by inhibiting NF-KB Pathway. Evid Based Complement Alternat Med. 2016;e1261270. https://doi.org/10.1155/2016/1261270.

Ahmad N, Fazal H, Ayaz M, Abbasil BH, Mohammad I, Fazal L. Dengue fever treatment with Carica papaya leaves extracts. Asian Pac J Trop Biomed. 2011;330-33. https://doi.org/10.1016/S2221-1691(11)60055-5.

Dharmarathna LC, Wickramasinghe S, Waduge RN, Rajapakse PV, kularatne SA. Does Carica papaya leaf-extract increase the platelet count? An experimental study in a murine model. Asian Pac J Trop Biomed. 2013;3(9):720-24. https://doi.org/10.1016/S2221-1691(13)60145-8.

Tham CS, Chakravarthi S, Haleagrahara N, Alwis R. Morphological study of bone marrow to assess the effects of lead acetate on hemapoiesis and aplasia and the ameliorating role of Carica papaya extract. Exp Ther Med.

;5(2):648-52. https://doi.org/10.3892/etm.2012.851.

Han X, Xue X, Zhao Y, Li Y, Liu W, Zhang J, Fan S. Rutin-enriched extract from Coriandrum sativum L. ameliorates

ionizing radiation-induced hematopoietic injury. Int J Mol Sci. 2017;18(5):942. https://doi.org/10.3390/ijms18050942.

Kour J, Alia MN, Ganaiea HA, Tabassum N. Amelioration of the cyclophosphamide induced genotoxic damage in mice by the ethanolic extract of Equisetum arvense. Toxicol Rep. 2017;4:226-33. https://doi.org/10.1016/j.toxrep.2017.05.001.

Lin S, Hao G, Longa M, Laia F, Lia Q, Xionga Y, Tiana Y, Laia D. Oyster (Ostrea plicatulaGmelin) polysaccharides intervention ameliorates cyclophosphamide—Induced genotoxicity and hepatotoxicity in mice via the Nrf2—ARE pathway Shuting. Biomed Pharmacother. 2017;95:1067-71. https://doi.org/10.1016/j.biopha.2017.08.058.

Shruthi S, Vijayalaxmi KK. Antigenotoxic effects of a polyherbal drug septilin against thegenotoxicity of cyclophosphamide in mice. Toxicol Rep. 2016;e563571. https://doi.org/10.1016/j.toxrep.2016.07.001.

Gamal-Eldeen AM, Abo-Zeidb MAM, Ahmed EF. Anti-genotoxic effect of the Sargassum dentifolium extracts: Prevention of chromosomal aberrations, micronuclei, and DNA fragmentation. Exp Toxicol Pathol. 2013;65:27-34. https://doi.org/10.1016/j.etp.2011.05.005.

Ojo OA, Ojo AB, Awoyinka O, Ajiboye BO, Oyinloye BE, Osukoya OA, Olayide II, Ibitayo A. Aqueous extract of Carica papaya Linn roots potentially attenuates arsenic induced biochemical and genotoxic effects in Wistar rats. J Tradit Complement Med. 2018;8(2):324-34. https://doi.org/10.1016/j.jtcme.2017.08.001.

Webster RP, Gawde MD, Bhattacharya RK. Protective effect of rutin, a flavonol glycoside, on the carcinogen induced DNA damage and repair enzymes in rats. Cancer Lett. 1996;109:185-91. https://doi.org/10.1016/S0304-3835(96)04443-6.

Published
2020-07-13
How to Cite
Luiz, T. C., da Cunha, A. P. S., Aguiar, D. H., Sugui, M. M., Bicudo, R. de C., Sinhorin, A. P., & Sinhorin, V. D. G. (2020). Antioxidant potential of Carica papaya Linn (Caricaceae) leaf extract in mice with cyclophosphamide induced oxidative stress. Scientia Medica, 30(1), e34702. https://doi.org/10.15448/1980-6108.2020.1.34702
Section
Original Articles