Cantorian Theory of Transfinite Numbers: Its Relation with Analogical-Geometric Thought
DOI:
https://doi.org/10.15448/1984-6746.2016.2.25652Keywords:
Set theory. Geometric intuition. G. Cantor. Exiom of constructability. K. Gödel.Abstract
In this short article, I analyze how geometric intuition was present in the seminal development of Cantor’s set theory. From this fact, it follows that the notion of set or transfinite number was not treated by Cantor as something worthy of a logical foundation. The paradoxes that have arisen in Cantor's theory are the result of such initial disengagement, and subsequent attempts to solve them have resulted in intuitive and expected aspects on sets or the infinite being lost. In particular, we see here the “non geometric” consequences of Gödel´s axiom of constructible sets.
Downloads
References
CANTOR, G. [1895/97]. “Beiträge zur Begründung der transfiniten Mengenlehre”. In: Cantor [1932], 282-351. English trans. in Cantor. Contributions to the founding of the theory of transfinite numbers. New York: Dover, [1955].
CANTOR, G. [1878]. “Ein Beiträg für Mannigfaltigkeitslehre”. In: Journal für reine und angewandte Mathematik,84, [1878]. DOI: https://doi.org/10.1515/crll.1878.84.242
CANTOR, G. [1932]. Gesammelte Abhandlungen mathematischen und philosophischen Inhalts, E. Zermelo (ed.), Berlin: Springer. Reprint Hildesheim: Olms, [1966].
CANTOR, G. [1883]. Grundlagen einer allgemeinen Mannigfaltigkeitslehre, Leipzig: B. G. Teubner. In Cantor 1932, 165-208. English in Ewald [1996]. v. 2.
CANTOR, G. [1872]. “Über Eine Ausdehnung eines Satzes aus der Theorie der trigonometrischen Reihen”. Mathematische Annalen”.
CANTOR, G. [1874]. “Über Eine Eigenschaft des Inbegriffes aller reellen algebraischen Zahlen”. In: Journal für reine und angewandte Mathematik, 77.
CANTOR, G. [1892]. “Über eine elementare Frage der Mannigfaltigkeitslehre,” Jahresbericht der Deutschen MathematikerVereinigung, 1: 75-78. In Cantor (1932), 278-280. English trans. In: Ewald [1996], v. 2.
CANTOR, G. [1884]. “Über unendliche, lineare Punktmannichfaltigkeiten, 6,” Mathematische Annalen, 23: 453-488. In: Cantor [1932], 210-244. DOI: https://doi.org/10.1007/BF01446598
DAUBEN, J. W. Georg Cantor. His Mathematics and Philosophy of the Infinite. Princeton University Press, New Jersey, [1979].
DUGAC, J. [1976]. Richard Dedekind et les Fondements des Mathematiques. J. Vrin, Paris.
EWALD, W. B. [1996]. From Kant to Hilbert: A Source Book in the Foundations of Mathematics. Oxford: Oxford University Press. 2 v.
FRAENKEL, A. [1961]. Abstract Set Theory. North Holland Publishing Co, Amsterdam.
FREGE, G. Die Grundlagen der Arithmetik: eine logisch- athematische
Untersuchung über den Begriff der Zahl, Breslau: W. Koebner, [1884]. Translated as The Foundations of Arithmetic: A logico-mathematical enquiry into the concept of number, by J. L. Austin. Oxford: Blackwell, 2nd ed., rev. [1974].
GEMIGNANI, M. C. Elementary Topology. New York: Dover, [1990].
GÖDEL, K. [1938]. “The Consistency of the Axiom of Choice and of the Generalized Continuum Hypothesis". Proceedings of the National Academy of Sciences, U.S.A. [S.l.: s.n.] 24, p. 556-557. DOI: https://doi.org/10.1073/pnas.24.12.556
HALLET, M. [1984]. Cantorian Set Theory and the Limitation of Size. Oxford: Clarendon Press.
KANAMORI, A. [2003]. The Higher Infinite. Second Edition. Springer Monographs in Mathematics, New York: Springer.
KATZ, V. A History of Mathematics. An Introduction. New York: Harper Collins College Publishing Co.
LAVINE, S. [1994]. Understanding the Infinite, Cambridge, MA: Harvard University Press.
LONERGAN, B. Insight – A Study of Human Understanding [1957]. Tradução para o português [2010]: insight – Um estudo sobre o Entendimento Humano. Tradução de Mendo Castro Henriques e Artur Mourão. São Paulo: É Realizações Editora, [2010].
RUSSEL, B. [1903]. The Principles of Mathematics, Cambridge, University Press. Reprint of the 2nd edn. [1937]: London: Allen & Unwin, [1948].
SCOTT, D. [1961]. “Measurable Cardinals and Constructible Sets”. BAPS 9. 521-524, XVII, 44, 49.
SKOLEM, T. [1923], in: [1977], "Some remarks on axiomatized set theory", From Frege to Gödel: A Source Book in Mathematical Logic, 1879-1931 (3rd ed.), Cambridge, Massachusetts: Harvard University Press, p. 290-301.
THOMAS-BOLDUC, A.R. [2016]. “Cantor, God, and Inconsistent Multiplicities”. In: Studies in Logic, Grammar and Rhetoric, 44 (1): 133-146. DOI: https://doi.org/10.1515/slgr-2016-0008
ZERMELO, [1930]. "Über Grenzzahlen und Mengenbereiche: Neue Untersuchungen über die Grundlagen der Mengenlehre". Fundamenta Mathematicae, 16: 29-47; DOI: https://doi.org/10.4064/fm-16-1-29-47
ZERMELO, E. [1908]. “Untersuchungen über die Grundlagen der Mengenlehre, I”, Mathematische Annalen, 65: 261-281. DOI: https://doi.org/10.1007/BF01449999
Downloads
Published
How to Cite
Issue
Section
License
Copyright
The submission of originals to Revista Veritas implies the transfer by the authors of the right for publication. Authors retain copyright and grant the journal right of first publication. If the authors wish to include the same data into another publication, they must cite Revista Veritas as the site of original publication.
Creative Commons License
Except where otherwise specified, material published in this journal is licensed under a Creative Commons Attribution 4.0 International license, which allows unrestricted use, distribution and reproduction in any medium, provided the original publication is correctly cited. Copyright: © 2006-2020 EDIPUCRS</p