Oxidative stress in patients with type 2 diabetes mellitus treated with metformin
DOI:
https://doi.org/10.15448/1980-6108.2017.2.25857Palavras-chave:
diabetes mellitus, estresse oxidativo, superóxido dismutase, malondialdeído, metformina, complicações do diabetes.Resumo
*** Estresse oxidativo em pacientes com diabetes mellitus tipo 2 em tratamento com metformina ***
OBJETIVOS: Avaliar parâmetros de estresse oxidativo em pacientes com diabetes mellitus tipo 2 em uso de metformina, relacionando estes valores a seus efeitos adversos, níveis plasmáticos, controle glicêmico, complicações diabéticas, perfil lipídico, e a influência do acompanhamento farmacoterapêutico.
MÉTODOS: Foram avaliados pacientes com diabetes mellitus tipo 2, em uso de metformina, em acompanhamento farmacoterapêutico por quatro meses. O acompanhamento farmacoterapêutico consistiu na prestação de informações e no esclarecimento de dúvidas dos pacientes sobre a medicação e a doença. Além disto, foram verificados os horários, as doses e a presença ou não de efeitos adversos relacionados ao uso de metformina. Foram avaliados perfil glicêmico e lipídico, estresse oxidativo (superóxido dismutase e malondialdeído) e metformina plasmática. Foram realizados os testes de correlação de Pearson e de Spearman para avaliar as relações entre as variáveis no início do estudo. Para testar a diferença entre os grupos com e sem complicações diabéticas, foram utilizados o t-teste independente ou o teste U de Mann-Whitney. A gama de valores entre o início e o final do estudo foi avaliada utilizando o teste t de Student ou o teste de Wilcoxon U. Foi adotado um nível de significância de 5%.
RESULTADOS: A amostra inicial foi composta por 49 pacientes com idade de 59±9 anos e índice de massa corporal de 29,8±5,1 kg/m2, com diabetes por uma mediana de tempo de 36 (intervalo interquartil 1-240) meses e em uso de metformina há uma mediana de 36 (intervalo interquartil 1-180) meses. Vinte e cinco pacientes deixaram o estudo entre a segunda e a quarta reunião. Os níveis de malondialdeído diferiram entre antes e após o acompanhamento farmacoterapêutico, correlacionando-se positivamente com glicemia, glicohemoglobina e triglicerídeos e negativamente com metformina e superóxido dismutase. Encontrou-se elevação da glicemia, glicohemoglobina e malondialdeído, e diminuição da metformina no grupo com complicações diabéticas, e foi identificada correlação entre malondialdeído e o número de complicações diabéticas por paciente.
CONCLUSÕES: Nesta amostra de pacientes com diabetes mellitus tipo 2 em tratamento com metformina, o estresse oxidativo foi mais pronunciado nos que apresentavam pior controle glicêmico e complicações diabéticas.
Downloads
Referências
Milech A, Oliveira JEP, Vencio S, organizadores. Diretrizes da Sociedade Brasileira de Diabetes (2015-2016). São Paulo: A.C. Farmacêutica; 2016.
Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract. 2010;87(1):4-14. https://doi.org/10.1016/j.diabres.2009.10.007
Kassahun T, Eshetie T, Gesesew, H. Factors associated with glycemic control among adult patients with type 2 diabetes mellitus: a cross-sectional survey in Ethiopia. BMC Res Notes. 2016 Feb 9;9:78. https://doi.org/10.1186/s13104-016-1896-7
Murthy G, Das T. Diabetic care initiatives to prevent blindness from diabetic retinopathy in India. Indian J Ophthalmol. 2016 Jan;64(1):50-4. https://doi.org/10.4103/0301-4738.178152
Sociedade Brasileira de Endocrinologia e Metabologia. SBEM. Projeto Diretrizes, Diabetes Mellitus, Prevenção. Rio de Janeiro: SBEM; 2006.
Ali A, Iqbal F, Taj A, Iqbal Z, Amin MJ, Iqbal QZ. Prevalence of microvascular complications in newly diagnosed patients with Type 2 diabetes. Pak J Med Sci. 2013 Jul;29(4):899-902. https://doi.org/10.12669/pjms.294.3704
Molyneaux LM, Constantino MI, Mcgill M, Zilkens R, Yue DK. Better glycaemic control and risk reduction of diabetic complications in Type 2 diabetes: comparison with the DCCT. Diabetes Res Clin Pract. 1998 Nov;42(2):77-83. https://doi.org/10.1016/S0168-8227(98)00095-3
Tapp RJ, Zimmet PZ, Harper CA, De Courten MP, Mccarty DJ, Balkau B, Taylor HR, Welborn TA, Shaw JE, Aus Diab Study Group. Diagnostic thresholds for diabetes: the association of retinopathy and albuminuria with glycaemia. Diabetes Res Clin Pract. 2006;73(3):315-21. https://doi.org/10.1016/j.diabres.2006.02.008
Daroux M, Prevost G, Maillard-Lefebvre H, Gaxatte C, D'agati VD, Schmidt AM, Boulanger G. Advanced glycation end-products: implications for diabetic and non-diabetic nephropathies. Diabetes Metab. 2010 Feb;36(1):1-10. https://doi.org/10.1016/j.diabet.2009.06.005
Ziegler D, Sohr CG, Nourooz-Zadeh J. Oxidative stress and antioxidant defense in relation to the severity of diabetic polyneuropathy and cardiovascular autonomic neuropathy. Diabetes Care. 2004 Sep;27(9):2178-83. https://doi.org/10.2337/diacare.27.9.2178
Tschiedel B. Complicações crônicas do diabetes. JBM. 2014;102(5):7-12.
Filla LA, Edwards JL. Metabolomics in diabetic complications. Mol Biosyst. 2016 Apr;12(4):1090-105. https://doi.org/10.1039/C6MB00014B
Ray KK, Seshasa ISR, Wijesuriya S, Sivakumaran R, Nethercott S, Preiss D, Erqou S, Sattar N. Effect of intensive control of glucose on cardiovascular outcomes and death in patients with diabetes mellitus: a meta-analysis of randomised controlled trials. Lancet. 2009;373(9677):1765-72. https://doi.org/10.1016/S0140-6736(09)60697-8
Shen GX. Oxidative stress and diabetic cardiovascular disorders: roles of mitochondria and NADPH oxidase. Can J Physiol Pharmacol. 2010;88(3):241-8. https://doi.org/10.1139/Y10-018
Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 2005;54(6):1615-25. https://doi.org/10.2337/diabetes.54.6.1615
Bellin C, Wiza DH, Wiernsperger NF, Rösen P. Generation of reactive oxygen species by endothelial and smooth muscle cells: influence of hyperglycemia and metformin. Horm Metab Res. 2006 Nov;38(11):732-9. https://doi.org/10.1055/s-2006-955084
Reis JS, Veloso CA, Mattos RT, Purish S, Nogueira-Machado JA. Estresse oxidativo: revisão da sinalização metabólica no diabetes tipo 1. Arq Bras Endocrinol. 2008;52(7):1096-105. https://doi.org/10.1590/s0004-27302008000700005
Halliwell B. Free radicals and vascular disease: how much do we know? BMJ. 1993 Oct 9;307(6909):885-6. https://doi.org/10.1136/bmj.307.6909.885
Marklund SL. Human copper-containing superoxide dismutase of high molecular weight. Proc Natl Acad Sci. 1982;79(24):7634-8. https://doi.org/10.1073/pnas.79.24.7634
Ookawara T, Eguchi H, Nishimura M, Kizaki T, Eiji Takayama, Saitoh D, Ohno H, Suzuki K. Effects of oxidative stress on the nuclear translocation of extracellular superoxide dismutase. Biochem Biophys Res Commun. 2003 Apr 11;303(3):914-9. https://doi.org/10.1016/S0006-291X(03)00441-8
Benzie IF. Lipid peroxidation: a review of causes, consequences, measurement and dietary influences. Int J Food Sci Nutr. 1996;47(3):233-61. https://doi.org/10.3109/09637489609012586
Lima ES, Abdalla DSP. Peroxidação lipídica: mecanismos e avaliação em amostras biológicas. Rev Bras Cien Farm. 2001;37(3):1-11.
Marnett LJ. Lipid peroxidation-DNA damage by malondialdehyde. Mutat Res. 1999;424(1-2):83-95. https://doi.org/10.1016/S0027-5107(99)00010-X
Antunes MV, Lazzaretti C, Gamaro GD, Linden R. Estudo pré-analítico e de validação para determinação de malondialdeído em plasma humano por cromatografia líquida de alta eficiência, após derivatização com 2,4-dinitrofenilhidrazina. Rev Bras Cien Farm. 2008;44:279-87. https://doi.org/10.1590/S1516-93322008000200013
Antunes MV, Wagner SC, Camargo JL, Linden R. Standardization of method for determining glycosylated hemoglobin (Hb A1c) by cation exchange high performance liquid chromatography. Braz J Pharm. 2009;45(4):650-7. https://doi.org/10.1590/S1984-82502009000400007
Kuyvenhoven JP, Meinders AE. Oxidative stress and diabetes mellitus: Pathogenesis of long-term complications. Eur J Intern Med. 1999;10(1):9-19. https://doi.org/10.1016/S0953-6205(99)00009-6
Soliman GZA. Blood lipid peroxidation (superoxide dismutase, malondialdehyde, glutathione) levels in Egyptian type 2 diabetic patients. Singapore Med J. 2008 Feb;49(2):129-36.
Mullarkey CJ, Edelstein D, Brownlee M. Free radical generation by early glycation products: a mechanism for accelerated atherogenesis in diabetes. Biochem Biophys Res Commun. 1990;173(3):932-9. https://doi.org/10.1016/S0006-291X(05)80875-7
Bhatia S, Shukla R, Madhu SV, Gambhir JK, Prabhu KM. Antioxidant status, lipid peroxidation and nitric oxide end products in patients of type 2 diabetes mellitus with nephropathy. Clin Biochem. 2003 Oct;36(7):557-62. https://doi.org/10.1016/S0009-9120(03)00094-8
Rahimi R, Nikfar S, Larijani B, Abdollahi M. A review on the role of antioxidants in the management of diabetes and its complications. Biomed Pharmacother. 2005 Aug;59(7):365-73. https://doi.org/10.1016/j.biopha.2005.07.002
Flekac M, Skrha J, Hilgertova J, Lacinova Z, Jarolimkova M. Gene polymorphisms of superoxide dismutases and catalase in diabetes mellitus. BMC Med Genet. 2008 Apr 21;9:30. https://doi.org/10.1186/1471-2350-9-30
Freitas JP, Filipe PM, Rodrigo FG. Lipid peroxidation in type 2 normolipidemic diabetic patients. Diabetes Res Clin Pract. 1997 May;36(2):71-5. https://doi.org/10.1016/S0168-8227(97)00032-6
Slatter DA, Bolton CH, Bailey AJ. The importance of lipid-derived malondialdehyde in diabetes mellitus. Diabetologia. 2000 May;43(5):550-7. https://doi.org/10.1007/s001250051342
Davi G, Ciabattoni G, Consoli A, Mezzetti A, Falco A, Santarone S, Pennese E, Vitacolonna E, Bucciarell T, Costantini F, Capani F, Patrono C. In vivo formation of 8-iso-prostaglandin f2alpha and platelet activation in diabetes mellitus: effects of improved metabolic control and vitamin E supplementation. Circulation. 1999;99(2):224-9. https://doi.org/10.1161/01.CIR.99.2.224
Hecker M, Ullrich V. On the mechanism of prostacyclin and thromboxane A2 biosynthesis. J Biol Chem. 1989;264(1):141-50.
Kume S, Takeya M, Mori T, Araki N, Suzuki H, Horiuchi S, Kodama T, Miyauchi Y, Takahashi K. Immunohistochemical and ultrastructural detection of advanced glycation end products in atherosclerotic lesions of human aorta with a novel specific monoclonal antibody. Am J Pathol. 1995;147(3):654-67.
Esterbauer H, Schaur RJ, Zollner H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med. 1991;11(1):81-128. https://doi.org/10.1016/0891-5849(91)90192-6
Dyer RG, Stewart MW, Mitcheson J, George K, Alberti MM, Laker MF. 7-ketocholesterol, a specific indicator of lipoprotein oxidation, and malondialdehyde in non-insulin dependent diabetes and peripheral vascular disease. Clin Chim Acta. 1997;260(1):1-13. https://doi.org/10.1016/S0009-8981(96)06499-6
Kesavulu MM, Rao BK, Giri R, Vijaya J, Subramanyam G, Apparao C. Lipid peroxidation and antioxidant enzyme status in Type 2 diabetics with coronary heart disease. Diabetes Res Clin Pract. 2001;53(1):33-9. https://doi.org/10.1016/S0168-8227(01)00238-8
Lehner R, Kuksis A. Biosynthesis of triacylglycerols. Prog Lipid Res. 1996;35(2):169-201. https://doi.org/10.1016/0163-7827(96)00005-7
Beisswenger P, Ruggiero-Lopez D. Metformin inhibition of glycation processes. Diabetes Metab. 2003;29(4 Pt 2):6S95-103.
Hou X, Song J, Li XN, Zhang L, Wang X, Chen L, Shen YH. Metformin reduces intracellular reactive oxygen species levels by upregulating expression of the antioxidant thioredoxin via the AMPK-FOXO3 pathway. Biochem Biophys Res Commun. 2010 May 28;396(2):199-205. https://doi.org/10.1016/j.bbrc.2010.04.017
Lang VB, Marković BB. Prevalence of comorbidity in primary care patients with type 2 diabetes and its association with elevated HbA1c: A cross-sectional study in Croatia. Scand J Prim Health. 2016;34(1):66-72. https://doi.org/10.3109/02813432.2015.1132886
Rovaris DL, Grohe R, Santos B, Perassolo MS, De Andrade FM. Metformina e Diabetes Melito Tipo 2: Passado, Presente e Farmacogética. Rev HCPA. 2010;30(4):382-90.
Bouchoucha M, Uzzan B, Cohen R. Metformin and digestive disorders. Diabetes Metab. 2011;37(2):90-6. https://doi.org/10.1016/j.diabet.2010.11.002
Fattman CL, Schaefer LM, Oury TD. Extracellular superoxide dismutase in biology and medicine. Free Radic Bio Med. 2003;35(3):253-6. https://doi.org/10.1016/S0891-5849(03)00275-2
Palanduz S, Ademoğlu E, Gökkuşu C, Tamer S. Plasma antioxidants and type 2 diabetes mellitus. Res Commun Mol Pathol Pharmacol. 2001;109(5-6):309-18.
Pan HZ, Zhang H, Chang D, Li H, Sui H. The change of oxidative stress products in diabetes mellitus and diabetic retinopathy. Brit J Ophthalmol. 2008;92(4):548-51. https://doi.org/10.1136/bjo.2007.130542