Cianobactérias para a Proteção de Cardiomiócitos contra Lesões Isquêmicas Miocárdicas
uma revisão sistemática de estudos em animais e in vitro
DOI:
https://doi.org/10.15448/1980-6108.2024.1.44970Palavras-chave:
cianobatérias, spirulina, isquemia, doenças cardiovasculares.Resumo
Objetivo: realizar uma revisão sistemática sobre o uso de cianobactérias para proteção do tecido cardíaco contra danos causados pela isquemia.
Métodos: esta revisão abrange estudos experimentais in vitro e estudos controlados em animais.
Resultados: os resultados indicam que, em geral, existem dois tipos de intervenções para o tratamento de isquemia e isquemia/reperfusão (IR) no tecido cardíaco: (1) tratamentos com extratos e (2) injeção de cianobactérias nos tecidos danificados. Os tratamentos com extratos baseiam-se no potencial antioxidante das cianobactérias, e os estudos concentram-se principalmente em Spirulina (Arthrospira platensis). Os métodos de injeção direta são fundamentados na alta capacidade desses organismos de liberar oxigênio durante a fotossíntese. Synechococcus elongatus é a espécie de cianobactéria mais comumente utilizada em injeções, seja entregue de forma independente ou transportada por hidrogéis ou nanopartículas. As injeções diretas de cianobactérias são técnicas inovadoras que podem promover proteção contra a apoptose e mostraram resultados promissores, no entanto, mais pesquisas são necessárias para aprimorar as técnicas e melhorar a eficácia geral.
Conclusão: Os efeitos desses tratamentos foram benéficos, considerando que os efeitos antioxidantes das Cianobactérias melhoram os marcadores bioquímicos sanguíneos e reduzem as áreas cardíacas danificadas. A liberação de oxigênio pelas cianobactérias no tecido cardíaco também promoveu a recuperação do tecido após isquemia ou IR.
Downloads
Referências
Kumar V, Abbas AK, Aster JC. Robbins Basic Pathology. 10th ed. Elsevier; 2017. 952 p.
Sarı E, Dilli D, Taşoğlu İ, Akduman H, Yumuşak N, Tümer NB, et al. Protective role of melatonin and spirulina in aortic occlusion-reperfusion model in rats. J Food Biochem. 2022 Apr 1;46(4). DOI: https://doi.org/10.1111/jfbc.13926
Tang PS, Mura M, Seth R, Liu M. Acute lung injury and cell death: how many ways can cells die? Am J Physiol Lung Cell Mol Physiol [Internet]. 2008;294:632–41. Available from: www.ajplung.org DOI: https://doi.org/10.1152/ajplung.00262.2007
Zhu Y, Woo YJ. Photosynthetic symbiotic therapeutics – An innovative, effective treatment for ischemic cardiovascular diseases. J Mol Cell Cardiol. 2022 Mar 1;164:51–7. DOI: https://doi.org/10.1016/j.yjmcc.2021.11.007
WHO. https://www.who.int/health-topics/cardiovascular-diseases#tab=tab_1. Accessed 29 June 2023. 2023. Cardiovascular diseases.
Gao J, Zhao L, Wang J, Zhang L, Zhou D, Qu J, et al. C-phycocyanin ameliorates mitochondrial fission and fusion dynamics in ischemic cardiomyocyte damage. Front Pharmacol. 2019;10(JUN). DOI: https://doi.org/10.3389/fphar.2019.00733
Mirmiran P, Hosseini-Esfahani F, Esfandiar Z, Hosseinpour-Niazi S, Azizi F. Associations between dietary antioxidant intakes and cardiovascular disease. Sci Rep. 2022 Dec 1;12(1). DOI: https://doi.org/10.1038/s41598-022-05632-x
Zhang Y, Liu S, Ma JL, Chem C, Huang P, Ji JH, et al. Apocynum venetum leaf extract alleviated doxorubicin-induced cardiotoxicity through the AKT/Bcl-2 signaling pathway. Phytomedicine. 2022;94:153815. DOI: https://doi.org/10.1016/j.phymed.2021.153815
Lopes G, Silva M, Vasconcelos V. The Pharmacological Potential of Cyanobacteria. London: Academic Press; 2022. 356 p.
Li Y. The Bioactivities of Phycocyanobilin from Spirulina. J Immunol Res. 2022;4008991. DOI: https://doi.org/10.1155/2022/4008991
United Nations. https://digitallibrary.un.org/record/560424?ln=en. Accessed in 29 June 2023. 2005. p. 2 The use of spirulina to combat hunger and malnutrition to help achieve sustainable development : revised draft resolution / Burundi, Cameroon, Dominican Republic, Nicaragua and Paraguay.
Pappas A, Tsiokanos A, Fatouros IG, Poulios A, Kouretas D, Goutzourelas N, et al. The effects of spirulina supplementation on redox status and performance following a muscle damaging protocol. Int J Mol Sci. 2021 Apr 1;22(7). DOI: https://doi.org/10.3390/ijms22073559
Williams KM, et al. Safety of photosynthetic Synechococcus elongatus for in vivo cyanobacteria–mammalian symbiotic therapeutics. 2020;13:1780–92. DOI: https://doi.org/10.1111/1751-7915.13596
Liu Y, Zhong D, He Y, Jiang J, Xie W, Tang Z, et al. Photoresponsive Hydrogel-Coated Upconversion Cyanobacteria Nanocapsules for Myocardial Infarction Prevention and Treatment. Advanced Science. 2022 Oct 25;9(30). DOI: https://doi.org/10.1002/advs.202202920
Younis NS, Bakir EM, Mohamed ME, El Semary NA. Cyanobacteria as nanogold factories II: Chemical Reactivity and anti-Myocardial Infraction Properties of Customized Gold Nanoparticles Biosynthesized by Cyanothece sp. Mar Drugs. 2019;17(7). DOI: https://doi.org/10.3390/md17070402
Bakir EM, Younis NS, Mohamed ME, El Semary NA. Cyanobacteria as nanogold factories: Chemical and anti-myocardial infarction properties of gold nanoparticles synthesized by lyngbya majuscula. Mar Drugs. 2018 Jun 1;16(6). DOI: https://doi.org/10.3390/md16060217
Osbourne NJT, Webb PM, Shaw GR. The toxins of Lyngbya majuscula and their human and ecological health effects. Environmental International. 2011;27:381–92. DOI: https://doi.org/10.1016/S0160-4120(01)00098-8
Vitek L. The role of bilirubin in diabetes, metabolic syndrome, and cardiovascular diseases. Front Pharmacol. 2012;55. DOI: https://doi.org/10.3389/fphar.2012.00055
Rodrigo R, Retamal C, Schupper D, Vergara-Hernández D, Saha S, Profumo E, et al. Antioxidant Cardioprotection against Reperfusion Injury: Potential Therapeutic Roles of Resveratrol and Quercetin. Vol. 27, Molecules. MDPI; 2022. DOI: https://doi.org/10.3390/molecules27082564
Strasky Z, Zemankova L, Nemeckova I, Rathouska J, Wong RJ, Muchova L, et al. Spirulina platensis and phycocyanobilin activate atheroprotective heme oxygenase-1: a possible implication for atherogenesis. Food Funct. 2013;4(11):1586–94. DOI: https://doi.org/10.1039/c3fo60230c
Khan M et al. C-phycocyanin protects against ischemia-reperfusion injury of heart through involvement of p38 MAPK and ERK signaling. Am J Physiol Heart Circ Physiol . 2006;290(5):136–45. DOI: https://doi.org/10.1152/ajpheart.01072.2005
Klebanoff SJ. Myeloperoxidase: friend and foe. J Leukoc Biol . 2005;77(5):598–625. DOI: https://doi.org/10.1189/jlb.1204697
Chen M, Blankenship RE. Expanding the solar spectrum used by photosynthesis. Trends Plant Sci. 2011;16(8):427–31. DOI: https://doi.org/10.1016/j.tplants.2011.03.011
Cohen JE, Goldstone AB, Paulsen MJ, Shudo Y, Steele AN, Edwards BB, et al. An innovative biologic system for photon-powered myocardium in the ischemic heart. Health and Medicine [Internet]. 2017;3:e1603078. Available from: http://advances.sciencemag.org/ DOI: https://doi.org/10.1126/sciadv.1603078
Stapleton LM, Farry JM, Zhu Y, Lucian HJ, Wang H, Paulsen MJ, et al. Microfluidic encapsulation of photosynthetic cyanobacteria in hydrogel microparticles augments oxygen delivery to rescue ischemic myocardium. J Biosci Bioeng. 2023 Jun 1; DOI: https://doi.org/10.1016/j.jbiosc.2023.03.001
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Scientia Medica
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.