Relation between testosterone, cortisol and aggressive behavior in humans

A systematic review

Authors

DOI:

https://doi.org/10.15448/1980-8623.2022.1.37133

Keywords:

PRISMA, hormones, aggression, HPA axis, HPG axis

Abstract

Aggression is an evolutionary behavior as it has a role in survival, increasing one’s access to food, shelter, status and reproduction. Testosterone and Cortisol are hormones often linked to aggressive behavior. We gathered and organized data from the last five years on the relation among Testosterone, Cortisol and aggression, while assessing the methods used by those scientific papers. A systematic review was made according to PRISMA guidelines. The search for indexed articles was performed in January 2019 using the keywords aggress* AND Testosterone AND Cortisol in three databases: Web of Science, SCOPUS and PsycInfo. The specific role of Testosterone and Cortisol in aggressive behavior is not unanimous. However, most articles found either an increase in Testosterone or a decrease in Cortisol associated with this behavior. There is the need for standardizing methods of triggering and assessing aggressive behavior, taking into account the assessment of social desirability and its impacts.

Downloads

Download data is not yet available.

Author Biographies

Marina Pante, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brasil.

Doutora em Psicologia pela Universidade Federal do Rio Grande do Sul (UFRGS), em Porto Alegre, RS, Brasil; mestre em Cognição Humana pela Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), em Porto Alegre, RS, Brasil. Professora do Instituto de Psicologia na Universidade Federal do Rio de Janeiro (UFRJ), no Rio de Janeiro, RJ, Brasil. 

Andreo Rysdik, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brasil.

Mestre em Neurociências pela Universidade Federal do Rio Grande do Sul (UFRGS) em Porto Alegre, RS Brasil. Residente Multiprofissional em Saúde do Adulto e Idoso pela Universidade Luterana do Brasil (ULBRA), em Canoas, RS, Brasil. 

Júlia Schneider Krimberg, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brasil.

Graduada em Psicologia pela Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS) em Porto Alegre, RS, Brasil. Mestranda em Ciências Biológicas: Neurociências pela Universidade Federal do Rio Grande do Sul (UFRGS), em Porto Alegre, RS, Brasil.

Rosa Maria Martins de Almeida, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brasil.

Doutora em Ciências Biológicas: Fisiologia pela Universidade Federal do Rio Grande do Sul (UFRGS), em Porto Alegre, RS, Brasil; pós-doutorado em Psicologia Experimental e Psicofarmacologia (Tufts University, USA). Docente do Programa de Pós-Graduação em Psicologia da UFRGS; Laboratório de Psicologia Experimental, Neurociências e Comportamento.

References

Allen, J. J., & Anderson, C. A. (2017). General aggression model. The International Encyclopedia of Media Effects. In P. Roessler, C. A. Hoffner, & L. van Zoonen (Eds.), International Encyclopedia of Media Effects. Wiley Blackwell. https://doi.org/10.1002/9781118783764.wbieme0078

Anderson, C. A., & Bushman, B. J. (2018). Media Violence and the General Aggression Model. Journal of Social Issues, 74(2), 386-413. https://doi.org/10.1111/josi.12275

Becker, D. V., Kenrick, D. T., Neuberg, S. L., Blackwell, K. C., & Smith, D. M. (2007). The confounded nature of angry men and happy women. Journal of Personality and Social Psychology, 92(2), 179-190. https://doi.org/10.1037/0022-3514.92.2.179

Buades-Rotger, M., Engelke, C., Beyer, F., Keevil, B. G., Brabant, G., & Krämer, U. M. (2016). Endogenous Testosterone is associated with lower amygdala reactivity to angry faces and reduced aggressive behavior in healthy young women. Scientific Reports, 6, 38538. https://doi.org/10.1038/srep38538

Cabral, J. C. C., & de Almeida, R. M. M. (2019). Effects of anger on dominance-seeking and aggressive behaviors. Evolution and Human Behavior, 40(1), 23-33. https://doi.org/10.1016/j.evolhumbehav.2018.07.006

Carré, J. M., Geniole, S. N., Ortiz, T. L., Bird, B. M., Videto, A., & Bonin, P. L. (2017). Exogenous Testosterone rapidly increases aggressive behavior in dominant and impulsive men. Biological Psychiatry, 82(4), 249-256. https://doi.org/10.1016/j.biopsych.2016.06.009

Carré, J. M., & Olmstead, N. A. (2015). Social neuroendocrinology of human aggression: Examining the role of competition-induced Testosterone dynamics. Neuroscience, 286, 171-186. https://doi.org/10.1016/j.neuroscience.2014.11.029

Carré, J. M., Putnam, S. K., & McCormick, C. M. (2009). Testosterone responses to competition predict future aggressive behaviour at a cost to reward in men. Psychoneuroendocrinology, 34(4), 561-570. https://doi.org/10.1016/j.psyneuen.2008.10.018

Cheng, J. T., & Kornienko, O. (2020). The neurobiology of human social behavior: A review of how testosterone and cortisol underpin competition and affiliation dynamics. In D. A. Granger, & M. K. Taylor (Eds.), Salivary Bioscience: Foundations of Interdisciplinary Saliva Research and Applications (pp. 519-553). Springer Nature. http://doi.org/10.1007/978-3-030-35784-9_22

Cima, M., Smeets, T., & Jelicic, M. (2008). Self-reported trauma, Cortisol levels, and aggression in psychopathic and non-psychopathic prison inmates. Biological Psychology, 78(1), 75-86. https://doi.org/10.1016/j.biopsycho.2007.12.011

Crewther, B. T., Lowe, T., Ingram, J., Weatherby, R. P. (2010). Validating the salivary Testosterone and Cortisol concentration measures in response to short high-intensity exercise. Journal of Sports Medicine and Physical Fitness, 50, 85-92. https://pubmed.ncbi.nlm.nih.gov/20308978

Dalton, J. E., Blain, G. H., & Bezier, B. (1998). State-Trait Anger Expression Inventory scores of male sexual offenders. International Journal of Offender Therapy and Comparative Criminology, 42(2), 141-148. https://doi.org/10.1177/0306624X9804200206

Denson, T. F., DeWall, C. N., & Finkel, E. J. (2012). Self-control and aggression. Current Directions in Psychological Science, 21(1), 20-25. https://doi.org/10.1177/0963721411429451

Eisenegger, C., Haushofer, J., & Fehr, E. (2011). The role of Testosterone in social interaction. Trends in Cognitive Sciences, 15(6), 263-271. https://doi.org/10.1016/j.tics.2011.04.008

Elsaesser, C., Gorman-Smith, D., & Henry, D. (2013). The role of the school environment in relational aggression and victimization. Journal of Youth and Adolescence, 42(2), 235-249. https://doi.org/10.1007/s10964-012-9839-7

Fernández, C., Pascual, J. C., Soler, J., Elices, M., Portella, M. J., & Fernández-Abascal, E. (2012). Physiological responses induced by emotion-eliciting films. Applied Psychophysiology and Biofeedback, 37(2), 73-79. https://doi.org/10.1007/s10484-012-9180-7

Fragkaki, I., Cima, M., & Granic, I. (2018). The role of trauma in the hormonal interplay of Cortisol, Testosterone, and oxytocin in adolescent aggression. Psychoneuroendocrinology, 88, 24-37. https://doi.org/10.1016/j.psyneuen.2017.11.005

Gagnon, N., Fréchette, I., Mallet, P.-L., Dubé, J., Houde, G., & Fink, G. D. (2018). Establishment of reference intervals for the salivary Cortisol circadian cycle, by electrochemiluminescence (ECLIA), in healthy adults. Clinical Biochemistry, 54, 56-60. https://doi.org/10.1016/j.clinbiochem.2018.02.012

Galvão, T. F., Pansani, T. de S. A., & Harrad, D. (2015). Principais itens para relatar revisões sistemáticas e meta-análises: a recomendação PRISMA. Epidemiologia e Serviços de Saúde, 24, 335-342. https://doi.org/10.5123/S1679-49742015000200017

García-León, A., Reyes, G. A., Vila, J., Pérez, N., Robles, H., & Ramos, M. M. (2002). The Aggression Questionnaire: A validation study in student samples. The Spanish Journal of Psychology, 5(1), 45-53. https://doi.org/10.1017/S1138741600005825

Gerevich, J., Bácskai, E., & Czobor, P. (2007). The generalizability of the buss–perry aggression questionnaire. International Journal of Methods in Psychiatric Research, 16(3), 124-136. https://doi.org/10.1002/mpr.221

Giltay, E. J., Enter, D., Zitman, F. G., Penninx, B. W. J. H., van Pelt, J., Spinhoven, P., & Roelofs, K. (2012). Salivary Testosterone: associations with depression, anxiety disorders, and antidepressant use in a large cohort study. Journal of Psychosomatic Research, 72(3), 205-213. https://doi.org/10.1016/j.jpsychores.2011.11.014

Glenn, A. L., Raine, A., Schug, R. A., Gao, Y., & Granger, D. A. (2011). Increased Testosterone-to-Cortisol ratio in psychopathy. Journal of Abnormal Psychology, 120(2), 389-399. https://doi.org/10.1037/a0021407

Grebe, N. M., Del Giudice, M., Thompson, M. E., Nickels, N., Ponzi, D., Zilioli, S., Maestripieri, D., & Gangestad, S. W. (2019). Testosterone, cortisol, and status-striving personality features: A review and empirical evaluation of the Dual Hormone hypothesis. Hormones and behavior, 109, 25-37. http://doi.org/10.1016/j.yhbeh.2019.01.006

Haller, J., & Kruk, M. R. (2003). Neuroendocrine stress responses and aggression. In Mattson, M. P. (Ed.), Neurobiology of aggression understanding and preventing violence (pp. 93-118). Humana Press. https://doi.org/10.1385/1-59259-382-8:093

Kaighobadi, F., & Stevens, J. R. (2013). Does fertility status influence impulsivity and risk taking in human females? Adaptive influences on intertemporal choice and risky decision making. Evolutionary Psychology, 11(3), 700–717. https://doi.org/10.1177/147470491301100314

Karacabey, K. (2009). The effect of exercise on leptin, insulin, Cortisol and lipid profiles in obese children. Journal of International Medical Research, 37(5), 1472-1478. https://doi.org/10.1177/147323000903700523

Kreibig, S. D. (2010). Autonomic nervous system activity in emotion: A review. Biological Psychology, 84(3), 394-421. https://doi.org/10.1016/j.biopsycho.2010.03.010

Kudielka, B. M., Buske-Kirschbaum, A., Hellhammer, D. H., & Kirschbaum, C. (2004). HPA axis responses to laboratory psychosocial stress in healthy elderly adults, younger adults, and children: impact of age and gender. Psychoneuroendocrinology, 29(1), 83-98. https://doi.org/10.1016/S0306-4530(02)00146-4

Lewis, J.G. (2006). Steroid analysis in saliva: An overview. Clinical Biochemist Review, 27, 139-146. https://www.researchgate.net/publication/6535245_Steroid_Analysis_in_Saliva_An_overview

Lievaart, M., Franken, I. H. A., & Hovens, J. E. (2016). Anger assessment in clinical and nonclinical populations: Further validation of the State–Trait Anger Expression Inventory‐2. Journal of Clinical Psychology, 72(3), 263-278. https://doi.org/10.1002/jclp.22253

McEwan, T. E., Davis, M. R., MacKenzie, R., & Mullen, P. E. (2009). The effects of social desirability response bias on STAXI‐2 profiles in a clinical forensic sample. British Journal of Clinical Psychology, 48(4), 431-436. https://doi.org/10.1348/014466509X454886

Miczek, K. A., de Almeida, R. M. M., Kravitz, E. A., Rissman, E. F., de Boer, S. F., & Raine, A. (2007). Neurobiology of escalated aggression and violence. Journal of Neuroscience, 27(44), 11803-11806. https://doi.org/10.1523/JNEUROSCI.3500-07.2007

Montero-López, A. S. R., García-Ríos, M. C., Rodríguez-Blázquez, M., Rogers, L. G., Peralta-Ramírez, M. I. (2018). The relationship between the menstrual cycle and cortisol secretion: Daily and stress-invoked cortisol patterns. International Journal of Psychophysiology, 131, 67-72. https://doi.org/10.1016/j.ijpsycho.2018.03.021

Montoya, E. R., Terburg, D., Bos, P. A., & Van Honk, J. (2012). Testosterone, Cortisol, and serotonin as key regulators of social aggression: A review and theoretical perspective. Motivation and Emotion, 36(1), 65-73. https://doi.org/10.1007/s11031-011-9264-3

Newman, E., O’Connor, D. B., & Conner, M. (2007). Daily hassles and eating behaviour: the role of Cortisol reactivity status. Psychoneuroendocrinology, 32(2), 125-132. https://doi.org/10.1016/j.psyneuen.2006.11.006

Nguyen, T.-V., McCracken, J. T., Albaugh, M. D., Botteron, K. N., Hudziak, J. J., & Ducharme, S. (2016). A Testosterone-related structural brain phenotype predicts aggressive behavior from childhood to adulthood. Psychoneuroendocrinology, 63, 109-118. https://doi.org/10.1016/j.psyneuen.2015.09.021

Oxford, J. K., Tiedtke, J. M., Ossmann, A., Özbe, D., & Schultheiss, O. C. (2017). Endocrine and aggressive responses to competition are moderated by contest outcome, gender, individual versus team competition, and implicit motives. PloS One, 12(7), e0181610. https://doi.org/10.1371/journal.pone.0181610

Papacosta, E., Nassis, G.P., Gleeson, M. (2016) Salivary hormones and anxiety in winners and losers of an international judo competition. J. Sport Sci., 34, 1281-1287. https://doi.org/10.1080/02640414.2015.1111521

Perna, E. B. D. S. F., Theunissen, E. L., Kuypers, K. P. C., Toennes, S. W., & Ramaekers, J. G. (2016). Subjective aggression during alcohol and cannabis intoxication before and after aggression exposure. Psychopharmacology, 233(18), 3331-3340. https://doi.org/10.1007/s00213-016-4371-1

Pesce, M., La Fratta, I., Ialenti, V., Patruno, A., Ferrone, A., Franceschelli, S., Rizutto, A., Tatangelo, R., Campagna, G., Speranza, L., Felaco, M., Grilli, A. (2015). Emotions, immunity and sport: Winner and loser athlete’s profile of fighting sport. Brain, Behavior, and Immunity, 46, 261-269. https://doi.org/10.1016/j.bbi.2015.02.013

Platje, E., Jansen, L. M. C., Raine, A., Branje, S. J. T., Doreleijers, T. A. H., de Vries-Bouw, M., Popma, A., van Lier, P. A. C., Koot, H. M., Meeus, W. H. J., & Vermeiren, R. R. J. M. (2013). Longitudinal associations in adolescence between Cortisol and persistent aggressive or rule-breaking behavior. Biological Psychology, 93(1), 132-137. https://doi.org/10.1016/j.biopsycho.2013.01.002

Pope, H. G., Kouri, E. M., & Hudson, J. I. (2000). Effects of supraphysiologic doses of Testosterone on mood and aggression in normal men: a randomized controlled trial. Archives of General Psychiatry, 57(2), 133-140. https://doi.org/10.1001/archpsyc.57.2.133

Popma, A., Vermeiren, R., Geluk, C. A. M. L., Rinne, T., van den Brink, W., Knol, D. L., Jansen, L. M. C., van Engeland, H., & Doreleijers, T. A. H. (2007). Cortisol moderates the relationship between Testosterone and aggression in delinquent male adolescents. Biological Psychiatry, 61(3), 405-411. https://doi.org/10.1016/j.biopsych.2006.06.006

Probst, F., Golle, J., Lory, V., & Lobmaier, J. S. (2018). Reactive aggression tracks within‐participant changes in women’s salivary Testosterone. Aggressive Behavior, 44(4), 362-371. https://doi.org/10.1002/ab.21757

Poustka, L., Maras, A., Hohm, E., Fellinger, J., Holtmann, M., Banaschewski, T., Lewicka, S., Schmidt, M. H., Esser, G., & Laucht, M. (2010). Negative association between plasma Cortisol levels and aggression in a high-risk community sample of adolescents. Journal of Neural Transmission, 117(5), 621-627. https://doi.org/10.1007/s00702-010-0386-7

Ribeiro Jr., E., Neave, N., Morais, R. N., Kilduff, L., Taylor, S. R., Butovskaya, M., Fink, B., John T. Manning, J. T. (2016). Digit ratio (2D: 4D), Testosterone, Cortisol, aggression, personality and hand-grip strength: Evidence for prenatal effects on strength. Early Human Development, 100, 21-25. https://doi.org/10.1016/j.earlhumdev.2016.04.003

Romero-Martínez, Á., & Moya-Albiol, L. (2016). The use of Testosterone/Cortisol ratio in response to acute stress as an indicator of propensity to anger in informal caregivers. The Spanish Journal of Psychology, 19, E48. https://doi.org/10.1017/sjp.2016.62

Rottenberg, J., & Gross, J. J. (2007). Emotion and emotion regulation: A map for psychotherapy researchers. Clinical Psychology: Science and Practice, 14(4), 323-328. https://doi.org/10.1111/j.1468-2850.2007.00093.x

Sauvé, B., Koren, G., Walsh, G., Tokmakejian, S., & Van Uum, S. H. M. (2007). Measurement of Cortisol in human hair as a biomarker of systemic exposure. Clinical & Investigative Medicine, 30(5), 183-191. https://doi.org/10.25011/cim.v30i5.2894

Schaefer, A., Nils, F., Sanchez, X., & Philippot, P. (2010). Assessing the effectiveness of a large database of emotion-eliciting films: A new tool for emotion researchers. Cognition and Emotion, 24(7), 1153-1172. https://doi.org/10.1080/02699930903274322

Staufenbiel, S. M., Penninx, B. W. J. H., Spijker, A. T., Elzinga, B. M., & van Rossum, E. F. C. (2013). Hair Cortisol, stress exposure, and mental health in humans: a systematic review. Psychoneuroendocrinology, 38(8), 1220-1235. https://doi.org/10.1016/j.psyneuen.2012.11.015

Susman, E. J., Dorn, L. D., Inoff-Germain, G., Nottelmann, E. D., & Chrousos, G. P. (1997). Cortisol reactivity, distress behavior, and behavioral and psychological problems in young adolescents: A longitudinal perspective. Journal of Research on Adolescence, 7(1), 81-105. https://doi.org/10.1207/s15327795jra0701_5

Terburg, D., Morgan, B., & van Honk, J. (2009). The Testosterone–Cortisol ratio: A hormonal marker for proneness to social aggression. International Journal of Law and Psychiatry, 32(4), 216-23. https://doi.org/10.1016/j.ijlp.2009.04.008

Turanovic, J. J., Pratt, T. C., & Piquero, A. R. (2017) Exposure to fetal testosterone, aggression, and violent behavior: A meta-analysis of the 2D:4D digit ratio. Aggression and Violent Behavior, 33, 51-61. https://doi.org/10.1016/j.avb.2017.01.008

Turner, A. I., Smyth, N., Hall, S. J., Torres, S. J., Husserin, M., Jayasinghe, S. U., Ball, K., & Clow, A. J. (2020) Psychological stress reactivity and future health and disease outcomes: A systematic review of prospective evidence. Psychoneuroendocrinology, 114, 104599. https://doi.org/10.1016/j.psyneuen.2020.104599

Tworoger, S. S., & Hankinson, S. E. (2006). Collection, processing, and storage of biological samples in epidemiologic studies: sex hormones, carotenoids, inflammatory markers, and proteomics as examples. Cancer Epidemiology and Prevention Biomarkers, 15(9), 1578-1581. https://doi.org/10.1158/1055-9965.EPI-06-0629

Van der Meij, L., Klauke, F., Moore, H. L., Ludwig, Y. S., Almela, M., & van Lange, P. A. M. (2015). Football fan aggression: The importance of low basal Cortisol and a fair referee. PloS One, 10(4). https://doi.org/10.1371/journal.pone.0120103

van Heeringen, K., Audenaert, K., Van de Wiele, L., & Verstraete, A. (2000). Cortisol in violent suicidal behaviour: association with personality and monoaminergic activity. Journal of Affective Disorders, 60(3), 181-189. https://doi.org/10.1016/S0165-0327(99)00180-9

Waltes, R., Chiocchetti, A. G., & Freitag, C. M. (2016). The neurobiological basis of human aggression: A review on genetic and epigenetic mechanisms. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 171(5), 650-675. https://doi.org/10.1002/ajmg.b.32388

Walther, A., Waldvogel, P., Noser, E., Ruppen, J., & Ehlert, U. (2017). Emotions and Steroid Secretion in Aging Men: A Multi—Study Report. Frontiers in Psychology, 8, 1722. https://doi.org/10.3389/fpsyg.2017.01722

Willner, P. (2015). The neurobiology of aggression: implications for the pharmacotherapy of aggressive challenging behaviour by people with intellectual disabilities. Journal of Intellectual Disability Research, 59(1), 82-92. https://doi.org/10.1111/jir.12120

Wittert, G. (2014). The relationship between sleep disorders and Testosterone. Current Opinion in Endocrinology, Diabetes and Obesity, 21(3), 239-243. https://doi.org/10.1097/MED.0000000000000069

Downloads

Published

2022-07-07

How to Cite

Pante, M., Rysdik, A., Krimberg, J. S., & Almeida, R. M. M. de. (2022). Relation between testosterone, cortisol and aggressive behavior in humans: A systematic review. Psico, 53(1), e37133. https://doi.org/10.15448/1980-8623.2022.1.37133

Most read articles by the same author(s)