Oxidative stress in patients with type 2 diabetes mellitus treated with metformin

Authors

  • Samuel Selbach Dries Hospital de Portão
  • Bárbara da Silveira Soares USF Petrópolis
  • Ana Luiza Ziulkoski University Feevale
  • Simone Gasparin Verza University Feevale
  • Rafael Linden University Feevale
  • Fabiana Michelsen de Andrade Uniritter
  • Magda Susana Perassolo University Feevale

DOI:

https://doi.org/10.15448/1980-6108.2017.2.25857

Keywords:

diabetes mellitus, oxidative stress, superoxide dismutase, malondialdehyde, metformin, diabetic complications.

Abstract

*** Oxidative stress in patients with type 2 diabetes mellitus treated with metformin ***

AIMS: To evaluate oxidative stress parameters in patients with type 2 diabetes mellitus treated with metformin, relating these values to its side effects, plasma levels, glycemic control, diabetic complications, lipid profile, and the influence of pharmacotherapeutic follow-up.

METHODS: Patients with type 2 diabetes mellitus, on metformin and in pharmacotherapeutic follow-up for four months, were evaluated. The pharmacotherapeutic follow-up consisted in providing information and answering patients’ questions about medication and disease. In addition, administration times, dosages, and presence or absence of side effects related to the use of metformin were verified. Glycemic and lipid profile, oxidative stress (superoxide dismutase and malondialdehyde) and plasma metformin were evaluated. Pearson’s correlation and Spearman’s correlation were performed to evaluate the relationship between the variables at the beginning of the study. The independent t-test and Mann-Whitney U test were used to assess the difference between the groups with and without diabetic complications. The range of values between the beginning and  end of the study was evaluated using Student’s t-test or Wilcoxon U test. The significance level was set at 5%.

RESULTS: The initial sample consisted of 49 patients aged 59±9 years with a body mass index of 29.8±5.1 kg/m2, who have had diabetes for a median time of 36 months (interquartile range of 1-240) and have been on metformin for a median time of 36 months (interquartile range of 1-180). Twenty-five patients left the study between the second and fourth meetings. Malondialdehyde levels differed between before and after pharmacotherapeutic follow-up, being positively correlated with blood glucose, glycohemoglobin, and triglyceride level, and negatively correlated with metformin and superoxide dismutase. Blood glucose, glycohemoglobin, and malondialdehyde levels increased, whereas metformin levels decreased in the group with diabetic complications, and there was a correlation between malondialdehyde and the number of diabetic complications per patient.

CONCLUSIONS: In this sample of patients with type 2 diabetes mellitus treated with metformin, oxidative stress was more pronounced in those with poor glycemic control and diabetic complications.

Downloads

Download data is not yet available.

Author Biography

Magda Susana Perassolo, University Feevale

Possui graduação em Farmácia pela Universidade Federal do Rio Grande do Sul (1999), mestrado em Ciências Médicas: Endocrinologia pela Universidade Federal do Rio Grande do Sul (2002) e doutorado em Ciências Médicas: Endocrinologia pela Universidade Federal do Rio Grande do Sul (2007). Atualmente é professora do curso de Farmácia da Universidade Feevale. É líder de projetos de pesquisa em diabetes e atenção farmacêutica, e de projeto de extensão na área de atenção farmacêutica. Faz parte do Conselho de Extensão da Univeridade Feevale. Tem 21 artigos publicados. Atualmente tem 5 alunos de IC sob orientação. Tem experiência na área de Farmácia; em diabete melito, metabolismo, ácidos graxos, estresse oxidativo e atenção farmacêutica.

 

References

Milech A, Oliveira JEP, Vencio S, organizadores. Diretrizes da Sociedade Brasileira de Diabetes (2015-2016). São Paulo: A.C. Farmacêutica; 2016.

Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract. 2010;87(1):4-14. https://doi.org/10.1016/j.diabres.2009.10.007

Kassahun T, Eshetie T, Gesesew, H. Factors associated with glycemic control among adult patients with type 2 diabetes mellitus: a cross-sectional survey in Ethiopia. BMC Res Notes. 2016 Feb 9;9:78. https://doi.org/10.1186/s13104-016-1896-7

Murthy G, Das T. Diabetic care initiatives to prevent blindness from diabetic retinopathy in India. Indian J Ophthalmol. 2016 Jan;64(1):50-4. https://doi.org/10.4103/0301-4738.178152

Sociedade Brasileira de Endocrinologia e Metabologia. SBEM. Projeto Diretrizes, Diabetes Mellitus, Prevenção. Rio de Janeiro: SBEM; 2006.

Ali A, Iqbal F, Taj A, Iqbal Z, Amin MJ, Iqbal QZ. Prevalence of microvascular complications in newly diagnosed patients with Type 2 diabetes. Pak J Med Sci. 2013 Jul;29(4):899-902. https://doi.org/10.12669/pjms.294.3704

Molyneaux LM, Constantino MI, Mcgill M, Zilkens R, Yue DK. Better glycaemic control and risk reduction of diabetic complications in Type 2 diabetes: comparison with the DCCT. Diabetes Res Clin Pract. 1998 Nov;42(2):77-83. https://doi.org/10.1016/S0168-8227(98)00095-3

Tapp RJ, Zimmet PZ, Harper CA, De Courten MP, Mccarty DJ, Balkau B, Taylor HR, Welborn TA, Shaw JE, Aus Diab Study Group. Diagnostic thresholds for diabetes: the association of retinopathy and albuminuria with glycaemia. Diabetes Res Clin Pract. 2006;73(3):315-21. https://doi.org/10.1016/j.diabres.2006.02.008

Daroux M, Prevost G, Maillard-Lefebvre H, Gaxatte C, D'agati VD, Schmidt AM, Boulanger G. Advanced glycation end-products: implications for diabetic and non-diabetic nephropathies. Diabetes Metab. 2010 Feb;36(1):1-10. https://doi.org/10.1016/j.diabet.2009.06.005

Ziegler D, Sohr CG, Nourooz-Zadeh J. Oxidative stress and antioxidant defense in relation to the severity of diabetic polyneuropathy and cardiovascular autonomic neuropathy. Diabetes Care. 2004 Sep;27(9):2178-83. https://doi.org/10.2337/diacare.27.9.2178

Tschiedel B. Complicações crônicas do diabetes. JBM. 2014;102(5):7-12.

Filla LA, Edwards JL. Metabolomics in diabetic complications. Mol Biosyst. 2016 Apr;12(4):1090-105. https://doi.org/10.1039/C6MB00014B

Ray KK, Seshasa ISR, Wijesuriya S, Sivakumaran R, Nethercott S, Preiss D, Erqou S, Sattar N. Effect of intensive control of glucose on cardiovascular outcomes and death in patients with diabetes mellitus: a meta-analysis of randomised controlled trials. Lancet. 2009;373(9677):1765-72. https://doi.org/10.1016/S0140-6736(09)60697-8

Shen GX. Oxidative stress and diabetic cardiovascular disorders: roles of mitochondria and NADPH oxidase. Can J Physiol Pharmacol. 2010;88(3):241-8. https://doi.org/10.1139/Y10-018

Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 2005;54(6):1615-25. https://doi.org/10.2337/diabetes.54.6.1615

Bellin C, Wiza DH, Wiernsperger NF, Rösen P. Generation of reactive oxygen species by endothelial and smooth muscle cells: influence of hyperglycemia and metformin. Horm Metab Res. 2006 Nov;38(11):732-9. https://doi.org/10.1055/s-2006-955084

Reis JS, Veloso CA, Mattos RT, Purish S, Nogueira-Machado JA. Estresse oxidativo: revisão da sinalização metabólica no diabetes tipo 1. Arq Bras Endocrinol. 2008;52(7):1096-105. https://doi.org/10.1590/s0004-27302008000700005

Halliwell B. Free radicals and vascular disease: how much do we know? BMJ. 1993 Oct 9;307(6909):885-6. https://doi.org/10.1136/bmj.307.6909.885

Marklund SL. Human copper-containing superoxide dismutase of high molecular weight. Proc Natl Acad Sci. 1982;79(24):7634-8. https://doi.org/10.1073/pnas.79.24.7634

Ookawara T, Eguchi H, Nishimura M, Kizaki T, Eiji Takayama, Saitoh D, Ohno H, Suzuki K. Effects of oxidative stress on the nuclear translocation of extracellular superoxide dismutase. Biochem Biophys Res Commun. 2003 Apr 11;303(3):914-9. https://doi.org/10.1016/S0006-291X(03)00441-8

Benzie IF. Lipid peroxidation: a review of causes, consequences, measurement and dietary influences. Int J Food Sci Nutr. 1996;47(3):233-61. https://doi.org/10.3109/09637489609012586

Lima ES, Abdalla DSP. Peroxidação lipídica: mecanismos e avaliação em amostras biológicas. Rev Bras Cien Farm. 2001;37(3):1-11.

Marnett LJ. Lipid peroxidation-DNA damage by malondialdehyde. Mutat Res. 1999;424(1-2):83-95. https://doi.org/10.1016/S0027-5107(99)00010-X

Antunes MV, Lazzaretti C, Gamaro GD, Linden R. Estudo pré-analítico e de validação para determinação de malondialdeído em plasma humano por cromatografia líquida de alta eficiência, após derivatização com 2,4-dinitrofenilhidrazina. Rev Bras Cien Farm. 2008;44:279-87. https://doi.org/10.1590/S1516-93322008000200013

Antunes MV, Wagner SC, Camargo JL, Linden R. Standardization of method for determining glycosylated hemoglobin (Hb A1c) by cation exchange high performance liquid chromatography. Braz J Pharm. 2009;45(4):650-7. https://doi.org/10.1590/S1984-82502009000400007

Kuyvenhoven JP, Meinders AE. Oxidative stress and diabetes mellitus: Pathogenesis of long-term complications. Eur J Intern Med. 1999;10(1):9-19. https://doi.org/10.1016/S0953-6205(99)00009-6

Soliman GZA. Blood lipid peroxidation (superoxide dismutase, malondialdehyde, glutathione) levels in Egyptian type 2 diabetic patients. Singapore Med J. 2008 Feb;49(2):129-36.

Mullarkey CJ, Edelstein D, Brownlee M. Free radical generation by early glycation products: a mechanism for accelerated atherogenesis in diabetes. Biochem Biophys Res Commun. 1990;173(3):932-9. https://doi.org/10.1016/S0006-291X(05)80875-7

Bhatia S, Shukla R, Madhu SV, Gambhir JK, Prabhu KM. Antioxidant status, lipid peroxidation and nitric oxide end products in patients of type 2 diabetes mellitus with nephropathy. Clin Biochem. 2003 Oct;36(7):557-62. https://doi.org/10.1016/S0009-9120(03)00094-8

Rahimi R, Nikfar S, Larijani B, Abdollahi M. A review on the role of antioxidants in the management of diabetes and its complications. Biomed Pharmacother. 2005 Aug;59(7):365-73. https://doi.org/10.1016/j.biopha.2005.07.002

Flekac M, Skrha J, Hilgertova J, Lacinova Z, Jarolimkova M. Gene polymorphisms of superoxide dismutases and catalase in diabetes mellitus. BMC Med Genet. 2008 Apr 21;9:30. https://doi.org/10.1186/1471-2350-9-30

Freitas JP, Filipe PM, Rodrigo FG. Lipid peroxidation in type 2 normolipidemic diabetic patients. Diabetes Res Clin Pract. 1997 May;36(2):71-5. https://doi.org/10.1016/S0168-8227(97)00032-6

Slatter DA, Bolton CH, Bailey AJ. The importance of lipid-derived malondialdehyde in diabetes mellitus. Diabetologia. 2000 May;43(5):550-7. https://doi.org/10.1007/s001250051342

Davi G, Ciabattoni G, Consoli A, Mezzetti A, Falco A, Santarone S, Pennese E, Vitacolonna E, Bucciarell T, Costantini F, Capani F, Patrono C. In vivo formation of 8-iso-prostaglandin f2alpha and platelet activation in diabetes mellitus: effects of improved metabolic control and vitamin E supplementation. Circulation. 1999;99(2):224-9. https://doi.org/10.1161/01.CIR.99.2.224

Hecker M, Ullrich V. On the mechanism of prostacyclin and thromboxane A2 biosynthesis. J Biol Chem. 1989;264(1):141-50.

Kume S, Takeya M, Mori T, Araki N, Suzuki H, Horiuchi S, Kodama T, Miyauchi Y, Takahashi K. Immunohistochemical and ultrastructural detection of advanced glycation end products in atherosclerotic lesions of human aorta with a novel specific monoclonal antibody. Am J Pathol. 1995;147(3):654-67.

Esterbauer H, Schaur RJ, Zollner H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med. 1991;11(1):81-128. https://doi.org/10.1016/0891-5849(91)90192-6

Dyer RG, Stewart MW, Mitcheson J, George K, Alberti MM, Laker MF. 7-ketocholesterol, a specific indicator of lipoprotein oxidation, and malondialdehyde in non-insulin dependent diabetes and peripheral vascular disease. Clin Chim Acta. 1997;260(1):1-13. https://doi.org/10.1016/S0009-8981(96)06499-6

Kesavulu MM, Rao BK, Giri R, Vijaya J, Subramanyam G, Apparao C. Lipid peroxidation and antioxidant enzyme status in Type 2 diabetics with coronary heart disease. Diabetes Res Clin Pract. 2001;53(1):33-9. https://doi.org/10.1016/S0168-8227(01)00238-8

Lehner R, Kuksis A. Biosynthesis of triacylglycerols. Prog Lipid Res. 1996;35(2):169-201. https://doi.org/10.1016/0163-7827(96)00005-7

Beisswenger P, Ruggiero-Lopez D. Metformin inhibition of glycation processes. Diabetes Metab. 2003;29(4 Pt 2):6S95-103.

Hou X, Song J, Li XN, Zhang L, Wang X, Chen L, Shen YH. Metformin reduces intracellular reactive oxygen species levels by upregulating expression of the antioxidant thioredoxin via the AMPK-FOXO3 pathway. Biochem Biophys Res Commun. 2010 May 28;396(2):199-205. https://doi.org/10.1016/j.bbrc.2010.04.017

Lang VB, Marković BB. Prevalence of comorbidity in primary care patients with type 2 diabetes and its association with elevated HbA1c: A cross-sectional study in Croatia. Scand J Prim Health. 2016;34(1):66-72. https://doi.org/10.3109/02813432.2015.1132886

Rovaris DL, Grohe R, Santos B, Perassolo MS, De Andrade FM. Metformina e Diabetes Melito Tipo 2: Passado, Presente e Farmacogética. Rev HCPA. 2010;30(4):382-90.

Bouchoucha M, Uzzan B, Cohen R. Metformin and digestive disorders. Diabetes Metab. 2011;37(2):90-6. https://doi.org/10.1016/j.diabet.2010.11.002

Fattman CL, Schaefer LM, Oury TD. Extracellular superoxide dismutase in biology and medicine. Free Radic Bio Med. 2003;35(3):253-6. https://doi.org/10.1016/S0891-5849(03)00275-2

Palanduz S, Ademoğlu E, Gökkuşu C, Tamer S. Plasma antioxidants and type 2 diabetes mellitus. Res Commun Mol Pathol Pharmacol. 2001;109(5-6):309-18.

Pan HZ, Zhang H, Chang D, Li H, Sui H. The change of oxidative stress products in diabetes mellitus and diabetic retinopathy. Brit J Ophthalmol. 2008;92(4):548-51. https://doi.org/10.1136/bjo.2007.130542

Published

2017-05-30

How to Cite

Dries, S. S., Soares, B. da S., Ziulkoski, A. L., Verza, S. G., Linden, R., de Andrade, F. M., & Perassolo, M. S. (2017). Oxidative stress in patients with type 2 diabetes mellitus treated with metformin. Scientia Medica, 27(2), ID25857. https://doi.org/10.15448/1980-6108.2017.2.25857

Issue

Section

Original Articles

Most read articles by the same author(s)