Efeitos do exercício físico regular sobre o fluxo sanguíneo da pele e nos fatores de risco cardiovascular em indivíduos com sobrepeso e obesidade
DOI:
https://doi.org/10.15448/1980-6108.2022.1.41980Palavras-chave:
fluxometria laser doppler, óxido nítrico, omentina, obesidade, exercício físicoResumo
Objetivo: sabe-se que níveis baixos de omentina e a reduzida biodisponibilidade de óxido nítrico (NO) são consequências da obesidade. Além disso, a disfunção microvascular pode ser um estágio inicial de doenças cardiovasculares em indivíduos obesos. Essa situação pode ser avaliada com a fluxometria de pele laser-Doppler (LDF).
Métodos: foram investigados os efeitos do exercício físico moderado por 12 semanas na reatividade microvascular e nos níveis plasmáticos de omentina e NO em 25 indivíduos com sobrepeso e obesidade. O grupo controle foi composto por 28 participantes sedentários que não eram obesos nem com sobrepeso. A reatividade microvascular foi obtida pela medida do fluxo sanguíneo da pele do dedo anelar da mão direita com LDF, que é um método não invasivo de avaliação. Com este método, objetivou-se examinar a resposta da hiperemia reativa pós-oclusiva dos pacientes. Os participantes de ambos os grupos nunca seguiram um cronograma regular de exercícios em sua vida.
Resultados: com o exercício regular houve diminuição estatisticamente significativa dos níveis de glicose (p=0,008), de colesterol (p=0,05) e de triglicerídeos (p=0,048), enquanto o índice de massa corporal e os níveis de lipoproteínas de alta e baixa densidade não se alteraram significativamente no grupo com sobrepeso/ obesidade. Além disso, o nível de omentina aumentou significativamente (p=0,01), mas o nível de NO não apresentou modificações significas. Observou- se, também, que as modificações nos níveis de omentina e NO mensurados antes e após o exercício físico foram significativamente correlacionados (r=0,57). Em relação à microcirculação, os valores do fluxo de repouso (p=0,001) e do valor de fluxo de pico e da LDF (p=0,001) aumentaram após o exercício físico.
Conclusão: nosso estudo mostra que o exercício físico moderado afeta a reatividade microvascular e os níveis plasmáticos de omentina em indivíduos com sobrepeso e obesidade.
Downloads
Referências
Poirier P, Giles TD, Bray GA, Hong Y, Stern JS, Pi- Sunyer FX et al. Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss an update of the 1997 American Heart Association Scientific statement on obesity and heart disease from the obesity committee of the council on nutrition, physical activity, and metabolism. Circulation. 2006;113(6):898-918. https://doi.org/10.1161/CIRCULATIONAHA.106.171016
Dandona P, Aljada A, Chaudhuri A, Bandyopadhyay A. The potential influence of inflammation and insulin resistance on the pathogenesis and treatment of atherosclerosis-related complications in type 2 diabetes. J Clin Endocrinol Metab. 2003;88(6):2422-9. https://doi.org/10.1210/jc.2003-030178
Saremi A, Asghari M, Ghorbani A. Effects of aerobic training on serum omentin-1 and cardiometabolic risk factors in overweight and obese men. J Sports Sci. 2010;28(9):993-8. https://doi.org/10.1080/02640414.2010.484070
Shibata R, Ouchi N, Kikuchi R, Takahashi R, Takeshita K, Kataoka Y et al. Circulating omentin is associated with coronary artery disease in men. Atherosclerosis. 2011; 219 (2): 811-4. https://doi.org/10.1016/j.atherosclerosis.2011.08.017
Franzoni F, Galetta F, Morizzo C, Lubrano V, Palombo C, Santoro G et al. Effects of age and physical fitness on microcirculatory function. Clin Sci (Lond). 2004;106(3):329-35. https://doi.org/10.1042/CS20030229
Georgescu A, Popov D, Constantin A, Nemecz M, Alexandru N, Cochior D et al. Dysfunction of human subcutaneous fat arterioles in obesity alone or obesity associated with Type 2 diabetes. Clin Sci (Lond). 2011;120(10):463-72. https://doi.org/10.1042/CS20100355
Yamawaki H, Kuramoto J, Kameshima S, Usui T, Okada M, Hara Y. Omentin, a novel adipocytokine inhibits TNFinduced vascular inflammation in human endothelial cells. Biochem Biophys Res Commun. 2011;408(2):339- 43. https://doi.org/10.1016/j.bbrc.2011.04.039
Schlager O, Willfort-Ehringer A, Hammer A, Steiner S, Fritsch M, Giurgea A et al. Microvascular function is impaired in children with morbid obesity. Vasc Med. 2011;16(2):97-102. https://doi.org/10.1177/1358863X11400780
Aggoun Y. Obesity, metabolic syndrome, and cardiovascular disease. Pediatr Res. 2007;61(6):653-59. https://doi.org/10.1203/pdr.0b013e31805d8a8c
Pan H-Y, Guo L, Li Q. Changes of serum omentin-1 levels in normal subjects and in patients with impaired glucose regulation and with newly diagnosed and untreated type 2 diabetes. Diabetes Res Clin Pract. 2010;88(1):29-33. https://doi.org/10.1016/j.diabres.2010.01.013
Humeau A, Steenbergen W, Nilsson H, Stromberg T. Laser Doppler perfusion monitoring and imaging: novel approaches. Med Biol Eng Comput. 2007;45(5):421-35. https://doi.org/10.1007/s11517-007-0170-5
Klonizakis M, Alkhatib A, Middleton G, Smith MF. Mediterranean diet- and exercise-induced improvement in age-dependent vascular activity. Clin Sci (Lond). 2013;124(9):579-87. https://doi.org/10.1042/CS20120412
Stewart J, Kohen A, Brouder D, Rahim F, Adler S, Garrick R et al. Noninvasive interrogation of microvasculature for signs of endothelial dysfunction in patients with chronic renal failure. Am J Physiol Heart Circ Physiol. 2004;287(6):H2687-H2696. https://doi.org/10.1152/ajpheart.00287.2004
Anderson TJ, Uehata A, Gerhard MD, Meredith IT, Knab S, Delagrange D et al. Close relation of endothelial function in the human coronary and peripheral circulations. J Am Coll Cardiol. 1995;26(5):1235-41. https://doi.org/10.1016/0735-1097(95)00327-4
Kubli S, Waeber B, Dalle-Ave A, Feihl, F. Reproducibility of laser Doppler imaging of skin blood flow as a tool to assess endothelial function. J Cardiovasc Pharmacol. 2010;36(5):640-8. https://doi.org/10.1097/00005344-200011000-00014
Rossi M, Taddei S, Fabbri A, Tintori G, Credidio L, Virdis A et al. Cutaneous vasodilation to acetylcholine in patients with essential hypertension. J Cardiovasc Pharmacol. 1997;29(3):406-11. https://doi.org/10.1097/00005344-199703000-00015
Keymel S, Sichwardt J, Balzer J, Stegemann E, Rassaf T, Kleinbongard P et al. Characterization of the noninvasive assessment of the cutaneous microcirculation by laser Doppler perfusion scanner. Microcirculation. 2010;17(5),358-66. https://doi.org/10.1111/j.1549-8719.2010.00037.x
Grassi G, Seravalle G, Scopelliti F, Dell’Oro R, Fattori L, Quarti-Trevano F et al. Structural and functional alterations of subcutaneous small resistance arteries in severe human obesity. Obesity. 2010;18(1):92-8. https://doi.org/10.1038/oby.2009.195
Lenasi H., Strucl, M. Effect of regular physical training on cutaneous microvascular reactivity. Sci Sports Exerc. 2004;36(4):606-12. https://doi.org/10.1249/01.mss.0000121948.86377.51
Pasqualini L, Schillaci G, Innocente S, Pucci G, Coscia F, Siepi D, et al. Lifestyle intervention improves microvascular reactivity and increases serum adiponectin in overweight hypertensive patients. Nutr Metab Cardiovasc Dis. 2010;20(2):87-92. https://doi.org/10.1016/j.numecd.2009.03.002
Kvernmo HD, Stefanovska A, Kirkebøen KA, Østerud B, Kvernebo K. Enhanced endothelium-dependent vasodilation in human skin vasculature induced by physical conditioning. Eur L Appl Physiol Occup Physiol. 1998;79(1):30-6. https://doi.org/10.1007/s004210050469
Mestek ML, Westby CM, Van Guilder GP, Greiner JJ, Stauffer BL, DeSouza CA. Regular aerobic exercise, without weight loss, improves endothelium‐dependent vasodilation in overweight and obese adults. obesity. 2012;18(8):1667-69. https://doi.org/10.1038/oby.2009.467
Johnson JM, Kellogg DL Jr. Local thermal control of the human cutaneous circulation. J Appl Physiol. 2010;109(4):1229-38. https://doi.org/10.1152/japplphysiol.00407.2010
Murphy EC, Carson L, Neal W, Baylis C, Donley D, Yeater R. Effects of an exercise intervention using Dance Dance Revolution on endothelial function and other risk factors in overweight children. Int J Pediatr Obes. 2009;4(4):205-14. https://doi.org/10.3109/17477160902846187
Senolt L, Polanska M, Filkova M, Cerezo LA, Pavelka K, Gay S et al. Vaspin and omentin: new adipokines differentially regulated at the site of inflammation in rheumatoid arthritis. Ann Rheum Dis. 2010,69(7):1410-1. https://doi.org/10.1136/ard.2009.119735
Zhong X, Li X, Liu F, Tan H, Shang D. Omentin inhibits TNF-alpha-induced expression of adhesion molecules in endothelial cells via ERK/NF-ƙB pathway. Biochem Biophys Res Commun. 2012;425(2):401-6. https://doi.org/10.1016/j.bbrc.2012.07.110
Wilms B, Ernst B, Gerig R, Schultes B. Plasma omentin-1 levels are related to exercise performance in obese women and increase upon aerobic endurance training. Exp Clin Endocrinol Diabetes. 2015;123(3):187- 92. https://doi.org/10.1055/s-0034-1398504
Faramarzi M, Banitalebi E, Nori S, Farzin S, Taghavian Z. Effects of rhythmic aerobic exercise plus core stability training on serum omentin, chemerin and vaspin levels and insulin resistance of overweight women. J Sports Med Phys Fitness. 2015;56(4):476-82.
Wang JS. Effects of exercise training and detraining on cutaneous microvascular function in man: the regulatory role of endothelium-dependent dilation in skin vasculature. Eur J Appl Physiol. 2005;93(4):429-34. https://doi.org/10.1007/s00421-004-1176-4
Gomes VA, Casella-Filho A, Chagas AC, Tanus-Santos JE. Enhanced concentrations of relevant markers of nitric oxide formation after exercise training in patients with metabolic syndrome. Nitric Oxide. 2008;19(4):345-50. https://doi.org/10.1016/j.niox.2008.08.005
de Souza Batista CM, Yang RZ, Lee MJ, Glynn NM, Yu DZ, Pray J et al. Omentin plasma levels and gene expression are decreased in obesity. Diabetes. 2007;56(6):1655-61. https://doi.org/10.2337/db06-1506
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2022 Scientia Medica
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.