Investigação etiológica de causa genética na perturbação do espetro do autismo
DOI:
https://doi.org/10.15448/1980-6108.2021.1.39581Palavras-chave:
Transtorno do Espetro Autista, Distúrbios do Neurodesenvolvimento, Testes genéticosResumo
OBJETIVOS: Os objetivos deste estudo foram caracterizar a investigação etiológica de causa genética na perturbação do espetro do autismo e determinar os fatores que se relacionam com a sua identificação.
MÉTODOS: Um estudo retrospetivo descritivo, com componente analítica, incluiu crianças e adolescentes com perturbação do espetro de autismo seguidos em consulta num hospital nível 2 entre novembro de 2017 e outubro de 2019. As seguintes variáveis foram analisadas: idade, sexo, idade na primeira consulta, antecedentes familiares, exame objetivo, avaliação cognitiva, investigação etiológica de causa genética e diagnóstico etiológico de causa genética. A análise estatística foi realizada utilizando o programa SPSS®v23 (nível de significância 0,05).
RESULTADOS: Identificámos 153 crianças com perturbação do espetro de autismo, das quais 48 realizaram investigação etiológica de causa genética: 45 realizaram microarray (alterações patogénicas 15,6%); 42 realizaram estudo molecular da síndrome X-Frágil (um alterado); dois realizaram sequenciação do gene MECP2 (um alterado). O diagnóstico de causa genética foi feito em 18,8% da amostra. A identificação de etiologia de causa genética relacionou-se com défice intelectual/atraso global do desenvolvimento psicomotor (p=0,04) e com a presença de antecedentes familiares relevantes (p=0,005).
CONCLUSÕES: A rentabilidade diagnóstica do estudo genético foi superior em doentes com atraso global do desenvolvimento psicomotor/défice intelectual associado e com antecedentes familiares relevantes.
Downloads
Referências
Kanner L. Autistic disturbances of affective contact. Acta Paedopsychiatr. Acta Paedopsychiatr. 1968;35(4):100-36.
Al-Dewik N, Al-Jurf R, Styles M, Tathamouni S, Alsharshani D, Alsharshani M, et al. Overview and introduction to Autism Spectrum Disorder (ASD). Adv Neurobiol. 2020;24:3-42. https://doi.org/10.1007/978-3-030-30402-7_1.
Chaste P, Roeder K, Devlin B. The Yin and Yang of autism genetics: how rare de novo and common variations affect liability. Annu Rev Genomics Hum Genet. 2017;18:167-87. https://doi.org/10.1146/annurev-genom-083115-022647.
American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th Edition Washington DC: American Psychiatric Association; 2013
Baumer N, Spence SJ. Evaluation and management of the child with autism spectrum disorder. Continuum. 2018;24(1):248-75. https://doi.org/10.1212/CON.0000000000000578
World Health Organization. Regional Office for South-East Asia. WHO South-East Asia regional strategy on autism spectrum disorders [Internet]. New Delhi: World Heath House, 2017 [cited 2021 Apr 15]. Available from: https://apps.who.int/iris/bitstream/handle/10665/259505/9789290225454-en.pdf?sequence=1&isAllowed=y
Wiśniowiecka-Kowalnik B, Nowakowska BA. Genetics and epigenetics of autism spectrum disorder-current evidence in the field. J Appl Genet. 2019;60(1):37-47. https://doi.org/10.1007/s13353-018-00480-w
Busch RM, Srivastava S, Hogue O, Frazier TW, Klaas P, Hardan A, et al. Neurobehavioral phenotype of autism spectrum disorder associated with germline heterozygous mutations in PTEN. Transl Psychiatry. 2019;9(1):253. https://doi.org/10.1038/s41398-019-0588-1
Al-Dewik N, Alsharshani M. New horizons for molecular genetics diagnostic and research in autism spectrum disorder. Adv Neurobiol. 2020;24:43-81. https://doi.org/10.1007/978-3-030-30402-7_2
Bitar T, Hleihel W, Marouillat S, Vonwill S, Vuillame ML, Soufia M, et al. Identification of rare copy number variations reveals PJA2, APCS, SYNPO, and TAC1 as novel candidate genes in autism spectrum disorders. Mol Genet Genomic Med. 2019;7(8):e786. https://doi.org/10.1002/mgg3.786
Toma C. Genetic Variation across phenotypic severity of autism. Trends Genet. 2020;36(4):228-31 https://doi.org/10.1016/j.tig.2020.01.005
McDiarmid TA, Belmadani M, Liang J, Meili F, Mathews EA, Mullen GP, et al. Systematic phenomics analysis of autism-associated genes reveals parallel networks underlying reversible impairments in habituation. Proc Natl Acad Sci USA. 2020;117(1):656-67. https://doi.org/10.1073/pnas.1912049116
Schaefer GB, Mendelsohn NJ; Professional Practice and Guidelines Committee. Clinical genetics evaluation in identifying the etiology of autism spectrum disorders: 2013 guideline revisions. Genet Med. 2013;15(5):399-407. https://doi.org/10.1038/gim.2013.32
Monteiro S, Pinto J, Mira Coelho A, Leão M, Dória S. Identification of copy number variation by Array-CGH in Portuguese children and adolescents diagnosed with autism spectrum disorders. Neuropediatrics. 2019;50(6):367-77. https://doi.org/10.1055/s-0039-1694797
Riggs ER, Andersen EF, Cherry AM, Kantarci S, Kearney H, Patel A, et al. Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020;22(2):245-57. https://doi.org/10.1038/s41436-019-0686-8
Woodbury-Smith M, Scherer SW. Progress in the genetics of autism spectrum disorder. Dev Med Child Neurol. 2018;60(5):445-51. https://doi.org/10.1111/dmcn.13717
Loomes R, Hull L, Mandy WPL. What is the male-to-female ratio in autism spectrum disorder? A systematic review and meta-analysis. J Am Acad Child Adolesc Psychiatry. 2017;56(6):466-74. https://doi.org/10.1016/j.jaac.2017.03.013
Jacquemont S, Coe BP, Hersch M, Duyzend MH, Krumm N, Bergmann S, et al. A higher mutational burden in females supports a “female protective model” in neurodevelopmental disorders. Am J Hum Genet. 2014;94(3):415-25. https://doi.org/10.1016/j.ajhg.2014.02.001
Zhang Y, Li N, Li C, Zhang Z, Teng H, Wang Y, et al. Genetic evidence of gender difference in autism spectrum disorder supports the female-protective effect. Transl Psychiatry. 2020;10(1):4. https://doi.org/10.1038/s41398-020-0699-8.
Baron-Cohen S. The extreme male brain theory of autism. Trends Cogn Sci. 2002;6(6):248-54. https://doi.org/10.1016/s1364-6613(02)01904-6.
Shen Y, Dies KA, Holm IA, Bridgemohan C, Sobeih MM, Caronna EB, et al. Clinical genetic testing for patients with autism spectrum disorders. Pediatrics. 2010;125(4):e727-e735. https://doi.org/10.1542/peds.2009-1684.
Tammimies K, Marshall CR, Walker S, Kaur G, Thiruvahindrapuram B, Lionel AC, et al. Molecular diagnostic yield of chromosomal microarray analysis and whole-exome sequencing in children with autism spectrum disorder. JAMA. 2015;314(9):895-903. https://doi.org/10.1001/jama.2015.10078.
Kalsner L, Twachtman-Bassett J, Tokarski K, Stanley C, Dumont-Mathieu T, Cotney J, et al. Genetic testing including targeted gene panel in a diverse clinical population of children with autism spectrum disorder: Findings and implications. Mol Genet Genomic Med. 2018;6(2):171-85. https://doi.org/10.1002/mgg3.354.
Schaefer GB, Starr L, Pickering D, Skar G, Dehaai K, Sanger WG. Array comparative genomic hybridization findings in a cohort referred for an autism evaluation. J Child Neurol. 2010;25(12):1498-503. https://doi.org/10.1177/0883073810370479.
Vicari S, Napoli E, Cordeddu V, Menghini D, Alesi V, Loddo S, et al. Copy number variants in autism spectrum disorders. Prog Neuropsychopharmacol Biol Psychiatry. 2019;92:421-27. https://doi.org/10.1016/j.pnpbp.2019.02.012.
Nisar S, Hashem S, Bhat AA, Syed N, Yadav S, Azeem MW, et al. Association of genes with phenotype in autism spectrum disorder. Aging. 2019;11(22):10742-70. https://doi.org/10.18632/aging.102473.
Sanders SJ, He X, Willsey AJ, Ercan-Sencicek AG, Samocha KE, Cicek AE, et al. Insights into autism spectrum disorder genomic architecture and biology from 71 risk loci. Neuron. 2015;87(6):1215-33. https://doi.org/10.1016/j.neuron.2015.09.016.
Bourgeron, T. From the genetic architecture to synaptic plasticity in autism spectrum disorder. Nat Rev Neurosci. 2015;16(9):551–63. https://doi.org/10.1038/nrn3992.
Capkova Z, Capkova P, Srovnal J, Staffova K, Becvarova V, Trkova M, et al. Differences in the importance of microcephaly, dysmorphism, and epilepsy in the detection of pathogenic CNV in ID and ASD patients. PeerJ. 2019;7:e7979 https://doi.org/10.7717/peerj.7979.
Portugal. Ministério da Saúde. Serviço Nacional de Saúde. Direção Geral de Saúde. Norma nº 002/2019. Abordagem diagnóstica e intervenção na perturbação do espetro do autismo em idade pediátrica e no adulto [Internet]. Lisboa: Direção Geral de Saúde; 2019 [Cited 2021 Apr 15]. Available from: https://normas.dgs.min-saude.pt/wp-content/uploads/2019/09/Abordagem-Diagnostica-e-Intervencao-na-Perturbacao-do-Espetro-do-Autismo-em-Idade-Pediatrica-e-no-Adulto_2019.pdf
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Scientia Medica
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.