Interleukin-10 and brain-derived neurotrophic factor responses to the Mat Pilates training in women with multiple sclerosis
DOI:
https://doi.org/10.15448/1980-6108.2018.4.31668Palavras-chave:
fator neurotrófico derivado do cérebro, interleucina-10, esclerose múltipla, método Pilates, citocinas, exercício.Resumo
***Respostas da Interleucina-10 e do fator neurotrófico derivado do cérebro ao treinamento de Mat Pilates em mulheres com esclerose múltipla***
OBJETIVOS: Determinar o efeito do Mat Pilates sobre os níveis séricos de interleucina-10 e fator neurotrófico derivado do cérebro em mulheres com esclerose múltipla.
MÉTODOS: Trinta mulheres com esclerose múltipla e deficiência física leve a moderada foram recrutadas e divididas aleatoriamente em grupos iguais, um de treinamento em Pilates e outro de controle. As pacientes do grupo de treinamento cumpriram um programa de Pilates três vezes por semana durante oito semanas. O grupo controle manteve seu estilo de vida de rotina. O nível sérico de interleucina-10 e o fator neurotrófico derivado do cérebro foram medidos antes e após o protocolo. As diferenças entre os grupos foram avaliadas usando o teste de análise de covariância para comparar pós-testes, considerando pré-testes como covariáveis (assumindo p-valor <0,05 como significativo).
RESULTADOS: Não houve alterações significativas na interleucina-10 (13,09±5,36 ng/ml no grupo treinamento em Pilates, em comparação a 13,21±4,76 ng/ml no grupo controle, p=0,81), mas foi observado um aumento no fator neurotrófico derivado do cérebro após o treinamento de Pilates por oito semanas (11550,14±2619,60 ng/ml no grupo treinamento em Pilates em comparação a 9664,35±3161,66 ng/ml no grupo controle, p=0,03).
CONCLUSÕES: Os resultados sugerem que a intensidade e duração desse protocolo não se relacionou com mudança significativa na interleucina-10, mas foi seguido por um aumento no fator neurotrófico derivado do cérebro nessas pacientes. Com base neste achado, a atividade física de acordo com a capacidade individual é recomendada para pacientes com esclerose múltipla, paralelamente à terapia medicamentosa.
Downloads
Referências
Kwilasz AJ, Grace PM, Serbedzija P, Maier SF, Watkins LR. The therapeutic potential of interleukin-10 in neuroimmune diseases. Neuropharmacology. 2015;96(Pt A):55-69. https://doi.org/10.1016/j.neuropharm.2014.10.020
Peiravian F, Rajaian H, Samiei A, Gholijani N, Gharesi-Fard B, Mokaram P, Rahimi-Jaberi A, Kamali Sarvestani E. Altered Serum Cytokine Profiles in Relapse Phase of Relapsing-Remitting Multiple Sclerosis. Iran J Immunol. 2016;13(3):186-96. https://doi.org/IJIv13i3A4
Yao Y, Simard AR, Shi FD, Hao J. IL-10-producing lymphocytes in inflammatory disease. Int Rev Immunol. 2013;32(3):324-36. https://doi.org/10.3109/08830185.2012.762361
Axtell RC, de Jong BA, Boniface K, van der Voort LF, Bhat R, De Sarno P, Naves R, Han M, Zhong F, Castellanos JG, Mair R, Christakos A, Kolkowitz I, Katz L, Killestein J, Polman CH, de Waal Malefyt R, Steinman L, Raman C. T helper type 1 and 17 cells determine efficacy of interferon-beta in multiple sclerosis and experimental encephalomyelitis. Nat Med. 2010;16(4):406-12. https://doi.org/10.1038/nm.2110
Munoz-Canoves P, Scheele C, Pedersen BK, Serrano AL. Interleukin-6 myokine signaling in skeletal muscle: a double-edged sword? FEBS J. 2013;280(17):4131-48. https://doi.org/10.1111/febs.12338
Peake JM, Della Gatta P, Suzuki K, Nieman DC. Cytokine expression and secretion by skeletal muscle cells: regulatory mechanisms and exercise effects. Exerc Immunol Rev. 2015;21:8-25.
Rehm K, Sunesara I, Marshall GD. Increased Circulating Anti-inflammatory Cells in Marathon-trained Runners. Int J Sports Med. 2015;36(10):832-6. https://doi.org/10.1055/s-0035-1547218
De Santi L, Polimeni G, Cuzzocrea S, Esposito E, Sessa E, Annunziata P, Bramanti P. Neuroinflammation and neuroprotection: an update on (future) neurotrophin-related strategies in multiple sclerosis treatment. Curr Med Chem. 2011;18(12):1775-84. https://doi.org/10.2174/092986711795496881
Phillips C, Baktir MA, Srivatsan M, Salehi A. Neuroprotective effects of physical activity on the brain: a closer look at trophic factor signaling. Front Cell Neurosci. 2014;8:170. https://doi.org/10.3389/fncel.2014.00170
Kerschensteiner M, Gallmeier E, Behrens L, Leal VV, Misgeld T, Klinkert WE, Kolbeck R, Hoppe E, Oropeza-Wekerle RL, Bartke I, Stadelmann C, Lassmann H, Wekerle H, Hohlfeld R. Activated human T cells, B cells, and monocytes produce brain-derived neurotrophic factor in vitro and in inflammatory brain lesions: a neuroprotective role of inflammation? J Exp Med. 1999;189(5):865-70. https://doi.org/10.1084/jem.189.5.865
Prokopova B, Hlavacova N, Vlcek M, Penesova A, Grunnerova L, Garafova A, Turcani P, Kollar B, Jezova D. Early cognitive impairment along with decreased stress-induced BDNF in male and female patients with newly diagnosed multiple sclerosis. J Neuroimmunol. 2017;302:34-40. https://doi.org/10.1016/j.jneuroim.2016.11.007
Naghashpour M, Amani R, Sarkaki A, Ghadiri A, Samarbafzadeh A, Jafarirad S, Malehi AS. Brain-derived neurotrophic and immunologic factors: beneficial effects of riboflavin on motor disability in murine model of multiple sclerosis. Iran J Basic Med Sci. 2016;19(4):439-48.
Wens I, Keytsman C, Deckx N, Cools N, Dalgas U, Eijnde BO. Brain derived neurotrophic factor in multiple sclerosis: effect of 24 weeks endurance and resistance training. Eur J Neurol. 2016;23(6):1028-35. https://doi.org/10.1111/ene.12976
Briken S, Rosenkranz SC, Keminer O, Patra S, Ketels G, Heesen C, Hellweg R, Pless O, Schulz K-H, Gold SM. Effects of exercise on Irisin, BDNF and IL-6 serum levels in patients with progressive multiple sclerosis. J Neuroimmunol. 2016;299:53-8. https://doi.org/10.1016/j.jneuroim.2016.08.007
Mokhtarzade M, Ranjbar R, Majdinasab N, Patel D, Molanouri Shamsi M. Effect of aerobic interval training on serum IL-10, TNFalpha, and adipokines levels in women with multiple sclerosis: possible relations with fatigue and quality of life. Endocrine. 2017;57(2):262-71. https://doi.org/10.1007/s12020-017-1337-y
Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M, Fujihara K, Havrdova E, Hutchinson M, Kappos L, Lublin FD, Montalban X, O'Connor P, Sandberg-Wollheim M, Thompson AJ, Waubant E, Weinshenker B, Wolinsky JS. Diagnostic criteria for multiple sclerosis: 2010 Revisions to the McDonald criteria. Ann Neurol. 2011;69(2):292-302. https://doi.org/10.1002/ana.22366
Deckx N, Wens I, Nuyts AH, Hens N, De Winter BY, Koppen G, Goossens H, Van Damme P, Berneman ZN, Eijnde BO, Cools N. 12 Weeks of Combined Endurance and Resistance Training Reduces Innate Markers of Inflammation in a Randomized Controlled Clinical Trial in Patients with Multiple Sclerosis. Mediators Inflamm. 2016;2016:6789276. https://doi.org/10.1155/2016/6789276
Ozkul C, Guclu-Gunduz A, Irkec C, Fidan I, Aydin Y, Ozkan T, Yazici G. Effect of combined exercise training on serum brain-derived neurotrophic factor, suppressors of cytokine signaling 1 and 3 in patients with multiple sclerosis. J Neuroimmunol. 2018;316:121-9. https://doi.org/10.1016/j.jneuroim.2018.01.002
White LJ, Castellano V, Mc Coy SC. Cytokine responses to resistance training in people with multiple sclerosis. J Sports Sci. 2006;24(8):911-4. https://doi.org/10.1080/02640410500357036
Heesen C, Gold SM, Hartmann S, Mladek M, Reer R, Braumann KM, Wiedemann K, Schulz KH. Endocrine and cytokine responses to standardized physical stress in multiple sclerosis. Brain Behav Immun. 2003;17(6):473-81. https://doi.org/10.1016/S0889-1591(03)00077-1
Ersoy E, Kus CN, Sener U, Coker I, Zorlu Y. The effects of interferon-beta on interleukin-10 in multiple sclerosis patients. Eur J Neurol. 2005;12(3):208-11. https://doi.org/10.1111/j.1468-1331.2004.00986.x
Jung SH, Park HS, Kim KS, Choi WH, Ahn CW, Kim BT, Kim SM, Lee SY, Ahn SM, Kim YK, Kim HJ, Kim DJ, Lee KW. Effect of weight loss on some serum cytokines in human obesity: increase in IL-10 after weight loss. J Nutr Biochem. 2008;19(6):371-5. https://doi.org/10.1016/j.jnutbio.2007.05.007
Bansi J, Bloch W, Gamper U, Kesselring J. Training in MS: influence of two different endurance training protocols (aquatic versus overland) on cytokine and neurotrophin concentrations during three week randomized controlled trial. Mult Scler. 2013;19(5):613-21. https://doi.org/10.1177/1352458512458605
Rasmussen P, Brassard P, Adser H, Pedersen MV, Leick L, Hart E, Secher NH, Pedersen BK, Pilegaard H. Evidence for a release of brain-derived neurotrophic factor from the brain during exercise. Exp Physiol. 2009;94(10):1062-9. https://doi.org/10.1113/expphysiol.2009.048512
Hopkins ME, Bucci DJ. BDNF expression in perirhinal cortex is associated with exercise-induced improvement in object recognition memory. Neurobiol Learn Mem. 2010;94(2):278-84. https://doi.org/10.1016/j.nlm.2010.06.006
Matthews VB, Astrom MB, Chan MH, Bruce CR, Krabbe KS, Prelovsek O, Akerstrom T, Yfanti C, Broholm C, Mortensen OH, Penkowa M, Hojman P, Zankari A, Watt MJ, Bruunsgaard H, Pedersen BK, Febbraio MA. Brain-derived neurotrophic factor is produced by skeletal muscle cells in response to contraction and enhances fat oxidation via activation of AMP-activated protein kinase. Diabetol. 2009;52(7):1409-18. https://doi.org/10.1007/s00125-009-1364-1
Seifert T, Brassard P, Wissenberg M, Rasmussen P, Nordby P, Stallknecht B, Adser H, Jakobsen AH, Pilegaard H, Nielsen HB, Secher NH. Endurance training enhances BDNF release from the human brain. Am J Physiol Regul Integr Comp Physiol. 2010;298(2):R372-7. https://doi.org/10.1152/ajpregu.00525.2009
Coelho FG, Gobbi S, Andreatto CA, Corazza DI, Pedroso RV, Santos-Galduroz RF. Physical exercise modulates peripheral levels of brain-derived neurotrophic factor (BDNF): a systematic review of experimental studies in the elderly. Arch Gerontol Geriatr. 2013;56(1):10-5. https://doi.org/10.1016/j.archger.2012.06.003
Knaepen K, Goekint M, Heyman EM, Meeusen R. Neuroplasticity - exercise-induced response of peripheral brain-derived neurotrophic factor: a systematic review of experimental studies in human subjects. Sports Med. 2010;40(9):765-801. https://doi.org/10.2165/11534530-000000000-00000
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2018 Scientia Medica
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Direitos Autorais
A submissão de originais para a Scientia Medica implica na transferência, pelos autores, dos direitos de publicação. Os direitos autorais para os artigos publicados nesta revista são do autor, com direitos da revista sobre a primeira publicação. Os autores somente poderão utilizar os mesmos resultados em outras publicações indicando claramente a Scientia Medica como o meio da publicação original.
Licença Creative Commons
Exceto onde especificado diferentemente, aplicam-se à matéria publicada neste periódico os termos de uma licença Creative Commons Atribuição 4.0 Internacional, que permite o uso irrestrito, a distribuição e a reprodução em qualquer meio desde que a publicação original seja corretamente citada.