Supplementation with fish oil reduces morphological aspects of muscle damage induced by intense exercise in rats

Autores

  • Daniel Pereira Coqueiro Unimar- Universidade de Marília http://orcid.org/0000-0001-7267-9137
  • Patricia Cincotto dos Santos Bueno Universidade de Marília- Unimar
  • Manuel de Jesus Simões Universidade Federal de São Paulo

DOI:

https://doi.org/10.15448/1980-6108.2018.4.31470

Palavras-chave:

inflamação, exercício, tecido muscular, ácidos graxos poli-insaturados, nutrição.

Resumo

***Suplementação com óleo de peixe reduz aspectos morfológicos de lesão muscular induzida por exercícios intensos em ratos***

OBJETIVOS: Investigar os efeitos do exercício resistido e da ingestão de óleo de peixe na morfologia da fibra muscular em ratos Wistar.

MÉTODOS: Quarenta e oito animais realizaram exercício resistido e foram divididos inicialmente em dois grupos. Um dos grupos não recebia óleo de peixe e o outro grupo ingeria o óleo de peixe. Os animais do segundo grupo realizaram o treinamento e ingeriram o óleo de peixe por um período de oito semanas. Ao final da última sessão de exercício resistido os animais foram organizados em seis subgrupos de oito cada, segundo o intervalo de tempo (12, 24 e 48 horas) transcorrido até o procedimento de retirada do músculo gastrocnêmio. Em cada tempo determinado após a última sessão de exercício resistido, o músculo gastrocnêmio foi retirado para análise morfológica.

RESULTADOS: As células do músculo esquelético dos animais que não receberam óleo de peixe apresentaram escores maiores de edema, especialmente as dos grupos que tiveram os músculos retirados em 24 e 48 horas. No grupo que ingeriu o óleo de peixe observou-se menor quantidade de infiltrado inflamatório e áreas de necrose reduzidas em comparação com os animais que se exercitavam sem o uso de óleo de peixe, em todos os intervalos de tempo pós-exercício.

CONCLUSÕES: A ingestão de óleo de peixe atenuou as alterações morfológicas no tecido muscular após exercícios de alta intensidade.

Downloads

Biografia do Autor

Daniel Pereira Coqueiro, Unimar- Universidade de Marília

Centro de Experimentação em Modelos Animais

Patricia Cincotto dos Santos Bueno, Universidade de Marília- Unimar

Department of Biochemistry and Pharmacology

Manuel de Jesus Simões, Universidade Federal de São Paulo

Department of Structural and Functional Biology

Referências

Aoi W, Naito Y, Yoshikawa T. Exercise and functional foods. Nutrition J [Internet]. 2006 [cited 2017 Mar 27]; 5:15. Available from: http://www.nutritionj.com/content/5/1/15

Tipton KD. Nutritional Support for Exercise-Induced Injuries. Sports Med. 2015;45 Suppl 1:S93-104. https://doi.org/10.1007/s40279-015-0398-4

Santos RV, Bassit RA, Caperuto EC, Costa Rosa LF. The effect of creatine supplementation upon inflammatory and muscle soreness markers after a 30km race. Life Sci. 2004;75(16):1917-24. https://doi.org/10.1016/j.lfs.2003.11.036

Volek JS, Ratamess NA, Rubin MR, Gómez AL, French DN, McGuigan MM, Scheett TP,

Sharman MJ, Häkkinen K, Kraemer WJ. The effects of creatine supplementation on muscular performance and body composition responses to short-term resistance training overreaching. Eur J Appl Physiol. 2004;91(5-6):628-37. https://doi.org/10.1007/s00421-003-1031-z

Cooke MB, Rybalka E, Williams AD, Cribb PJ, Hayes A. Creatine supplementation enhances muscle force recovery after eccentrically-induced muscle damage in healthy individuals. J Int Soc Sports Nutr. 2009;6:13. https://doi.org/10.1186/1550-2783-6-13

Deminice R, Rosa FT, Franco GS, Jordao AA, Freitas EC. Effects of creatine supplementation on oxidative stress and inflammatory markers after repeated-sprint exercise in humans. Nutrition. 2013;29(9):1127-32. https://doi.org/10.1016/j.nut.2013.03.003

Lieber RL, Fridén J. Muscle damage is not a function of muscle force but active muscle strain. J Appl Physiol (1985). 1993;74(2):520-6. https://doi.org/10.1152/jappl.1993.74.2.520

Clarkson PM, Hubal MJ. Exercise-induced muscle damage in humans. Am J Phys MedRehabil. 2002;81(11 Suppl): S52-69. https://doi.org/10.1097/00002060-200211001- 00007

Jouris KB, McDaniel JL, Weiss EP. The Effect of Omega-3 Fatty Acid Supplementation on the Inflammatory Response to eccentric strength exercise. J Sports Sci Med. 2011;10(3):432-8.

Gray P, Chappell A, Jenkinson AM, Thies F, Gray SR. Fish oil supplementation reduces markers of oxidative stress but not muscle soreness after eccentric exercise. Int J Sport Nutr Exerc Metab. 2014;24(2):206-14. https://doi.org/10.1123/ijsnem.2013-0081

Ochi E, Tsuchiya Y. Eicosahexanoic Acid (EPA) and Docosahexanoic Acid (DHA) in Muscle Damage and Function. Nutrients. 2018;10(5):552. https://doi.org/10.3390/nu10050552

Calder PC. N-3 fatty acids, inflammation and immunity: new mechanisms to explain old actions. Proc Nutr Soc. 2013;72(3):326-36. https://doi.org/10.1017/S0029665113001031

Calder PC. Functional roles of fatty acids and their effects on human health. JPEN J Parenter Enteral Nutr. 2015;39(1 Suppl):18S-32S. https://doi.org/10.1177/0148607115595980

Surette ME. The science behind dietary omega-3 fatty acids. CMAJ. 2008;178(2):177-80. https://doi.org/10.1503/cmaj.071356

Molfino A, Gioia G, Rossi Fanelli F, Muscaritoli M. The role for dietary omega-3 fatty acids supplementation in older adults. Nutrients. 2014;6(10):4058-73. https://doi.org/10.3390/nu6104058

Baker EJ, Miles EA, Burdge GC, Yaqoob P, Calder P C. Metabolism and functional effects of plant-derived omega-3 fatty acids in humans. Prog Lipid Res. 2016;64:30-56. https://doi.org/10.1016/j.plipres.2016.07.002

Kremer JM. n-3 fatty acid supplements in rheumatoid arthritis. Am J Clin Nutr. 2000;71(1 Suppl):349S-51S. https://doi.org/10.1093/ajcn/71.1.349s

DiLorenzo FM, Drager CJ, Rankin JW. Docosahexaenoic acid affects markers of inflammation and muscle damage after eccentric exercise. J Strength Cond Res. 2014;28(10):2768-74. https://doi.org/10.1519/JSC.0000000000000617

Houghton D, Onambele GL. Can a standard dose of eicosapentaenoic acid (EPA) supplementation reduce the symptoms of delayed onset of muscle soreness? J Int Soc Sports Nutr. 2012;9(1):2. https://doi.org/10.1186/1550-2783-9-2

Tartibian B, Maleki BH, Abbasi A. The effects of ingestion of omega-3 fatty acids on perceived pain and external symptoms of delayed onset muscle soreness inuntrained men. Clin J Sport Med. 2009;19(2):115-9. https://doi.org/10.1097/JSM.0b013e31819b51b3

Haidamus LL. A suplementação com ácidos graxos poliinsaturados ômega-3 reduziu a concentração plasmática de eicosanóides pró-inflamatórios, da enzima lactato desidrogenase e de lesões musculares em ratos submetidos a sessões de natação [tese]. Campinas: Universidade Estadual de Campinas; 2007. 75 p. Available from: http://repositorio.unicamp.br/jspui/handle/REPOSIP/256329

Fett CA. Composição corporal, ganho de força e resposta à exaustão, no treinamento hipertrófico, em presença da suplementação com ácidos graxos W-3 ou Triglicerídeo de cadeia média [dissertação]. Rio Claro: Universidade Estadual Paulista; 2001. 139 p.

Marqueti RC, Parizotto NA, Chriguer RS, Perez SE, Selistre-de-Araujo HS. Androgenic-anabolic steroids associated with mechanical loading inhibit matrix metallopeptidase activity and affect the remodeling of the achilles tendon in rats. Am J Sports Med. 2006;34(8):1274-80. https://doi.org/10.1177/0363546506286867

Renno AC, Silveira Gomes AR, Nascimento RB, Salvini T, Parizoto N. Effects of a progressive loading exercise program on the bone and skeletal muscle properties of female osteopenic rats. Exp Gerontol. 2007;42(6):517-22. https://doi.org/10.1016/j.exger.2006.11.014

Secchi KV, Morais CP, Cimatti PF, Tokars E, Gomes ARS. Efeito do alongamento e do exercício contra-resistido no músculo esquelético de rato. Rev Bras Fisioter. 2008;12(3):228-34. https://doi.org/10.1590/S1413-35552008000300011

Simopoulos AP. Omega-3 fatty acids and athletics. Curr Sports Med Rep. 2007;6(4):230-6.

Neves RVP, Souza MK, Passos CS, Bacurau RFP, Simões HG, Prestes J, Boim MA,

Câmara NO, Franco Mdo C, Moraes MR. Resistance Training in Spontaneously Hypertensive Rats with Severe Hypertension. Cardiol. 2016;106(3):201-9. https://doi.org/10.1590/10.5935/abc.20160019

Brasileiro JL, Fagundes DJ, Miiji LON, Oshima CTF, Teruya R, Marks G, Inouye CM, Santos MA. Ischemia and reperfusion of the soleus muscle of rats with pentoxifylline. J Vasc Bras. 2007; 6(1):50-63. https://doi.org/10.1590/S1677-54492007000100008

Proske U, Morgan DL. Muscle damage from eccentric exercise: mechanism, mechanical signs, adaptation and clinical applications. J Physiol. 2001;537(Pt 2):333-45. https://doi.org/10.1111/j.1469-7793.2001.00333.x

Armstrong RB. Initial events in exercise-induced muscular injury. Med Sci Sports Exerc. 1990;22(4):429-35.

Garcia BC, Camargo Filho JCS, Vanderlei LCM, Pastre CM, Camargo RCT, Souza TA, Haidamus LL, de Oliveira AC. Efeitos da dieta suplementada com ômega-3 no músculo sóleo de ratos submetidos à natação: análise histológica e morfométrica. Rev Bras Med Esporte. 2010;16(5):363-7. https://doi.org/10.1590/S1517-86922010000500009

Krumbholz R, Krumbholz K, Krumbholz C, Schirra N, Lembke P, inventors. [Novel use of omega-3-fatty acid(s)]. DE patent EP 2222292 A2. 2010 Sept 1. German.

Poudyal H, Panchal SK, Diwan V, Brown L. Omega-3 fatty acids and metabolic syndrome: effects and emerging mechanisms of action. Prog Lipid Res. 2011;50(4):372-87. https://doi.org/10.1016/j.plipres.2011.06.003

Tsuchiya Y, Yanagimoto K, Nakazato K, Hayamizu K, Ochi E. Eicosapentaenoic and docosahexaenoic acids-rich fish oil supplementation attenuates strength loss and limited joint range of motion after eccentric contractions: a randomized, double-blind, placebo-controlled, parallel-group trial. Eur J Appl Physiol. 2016;116:1179-88. https://doi.org/10.1007/s00421-016-3373-3

Smith LL. Acute inflammation: the underlying mechanism in delayed onset muscle soreness? Med Sci Sports Exerc. 1991;23(5):542-51. https://doi.org/10.1249/00005768-199105000-00006

Northoff H, Berg A. Immunologic mediators as parameters of the reaction to strenuous exercise. Int J Sports Med. 1991;12 Suppl 1:S9-15. https://doi.org/10.1055/s-2007-1024743

Jakeman J R, Lambrick DM, Wooley B, Babraj J A, Faulkner JA. Effect of an acute dose of omega-3 fish oil following exercise-induced muscle damage. Eur J Appl Physiol. 2017;117(3):575-82. https://doi.org/10.1007/s00421-017-3543-y

Corder KE, Newsham KR, McDaniel JL, Ezequiel UR, Weiss EP . Effects of Short-Term Docosahexaenoic Acid Supplementation on Markers of Inflammation after Eccentric Strength Exercise in Women. J Sports Sci Med. 2016;15(1):176-83.

Mickleborough TD, Sinex JA, Platt D., Chapman RF, Hirt M. The effects PCSO-524®, a patented marine oil lipid and omega-3 PUFA blend derived from the New Zealand green lipped mussel (Perna canaliculus), on indirect markers of muscle damage and inflammation after muscle damaging exercise in untrained men: a randomized, placebo controlled trial. J Int Soc Sports Nutr. 2015;12(1):10. https://doi.org/10.1186/s12970-015-0073-z

Marques CG, Santos VC, Levada-Pires AC, Jacintho TM, Gorjão R, Pithon-Curim TC, Cury-Boaventura MF. Effects of DHA-rich fish oil supplementation on the lipid profile, markers of muscle damage, and neutrophil function in wheelchair basketball athletes before and after acute exercise. Appl Physiol Nutr Metab. 2015;40(6):596-604. https://doi.org/10.1139/apnm-2014-0140

Brouard C, Pascaud M. Effects of moderate dietary supplementations with n-3 fatty acids on macrophage and lymphocyte phospholipids and macrophage eicosanoid synthesis in the rat. Biochim Biophys Acta. 1990;1047(1):19-28. https://doi.org/10.1016/0005-2760(90)90255-V

Browning LM. n-3 Polyunsaturated fatty acids, inflammation and obesity-related disease. Proc Nutr Soc. 2003;62(2):447-53. https://doi.org/10.1079/PNS2003252

Giugliano D, Ceriello A, Esposito K. The effects of diet on inflammation: emphasis on the metabolic syndrome. J Am Coll Cardiol. 2006;48(4):677-85. https://doi.org/10.1016/j.jacc.2006.03.052

Lombardo YB, Chicco AG. Effects of dietary polyunsaturated n-3 fatty acids on dyslipidemia and insulin resistance in rodents and humans. A review. J Nutr Biochem. 2006;17(1):1-13. https://doi.org/10.1016/j.jnutbio.2005.08.002

Calder PC. Immunomodulation by omega-3 fatty acids. Prostaglandins Leukot Essent Fatty Acids. 2007;77(5-6):327-35. https://doi.org/10.1016/j.plefa.2007.10.015

Gopinath B, Buyken AE, Flood VM, Empson M, Rochtchina E, Mitchell P. Consumption of polyunsaturated fatty acids, fish, and nuts and risk of inflammatory disease mortality. Am J Clin Nutr. 2011;93(5):1073-9. https://doi.org/10.3945/ajcn.110.009977

Russ DW, Garvey SM, Densmore C, Hawks T, Herman S, Pardi K. Effect of acute muscle contusion injury, with and without dietary fish oil, on adult and aged male rats: contractile and biochemical responses. Exp Gerontol. 2018;111(1): 241-52. https://doi.org/10.1016/j.exger.2018.08.001

Molnar AM. Alterações mitocondriais e estresse oxidativo muscular induzidos por um treinamento físico: influência do exercício excêntrico e da suplementação com ácidos graxos ômega-3 [tese]. Campinas: Universidade Estadual de Campinas; 2005. 97 p.

Kelley DS. Modulation of human immune and inflammatory responses by dietary fatty acids. Nutrition. 2001;17(7-8):669-73. https://doi.org/10.1016/S0899-9007(01)00576-7

Chapkin RS, Akoh CC, Miller CC. Influence of dietary n-3 fatty acids on macrophage glycerophospholipid molecular species and peptidoleukotriene synthesis. J Lipid Res. 1991;32(7):1205-13.

Lee TH, Hoover RL, Williams JD, Sperling RI, Ravalese J 3rd, Spur BW, et al. Effect of dietary enrichment with eicosapentaenoic and docosahexaenoic acids on in vitro neutrophil and monocyte leukotriene generation and neutrophil function. N Engl J Med. 1985;312(19):1217-24. https://doi.org/10.1056/NEJM198505093121903

Endres S, Ghorbani R, Kelley VE, Georgilis K, Lonnemann G, Van der Meer JW, Cannon JG, Rogers TS, Klempner MS, Weber PC, Schaefer EJ, Wolff SM, et al. The effect of dietary supplementation with n-3 polyunsaturated fatty acids on the synthesis of interleukin-1 and tumor necrosis factor by mononuclear cells. N Engl J Med. 1989;320(5):265-71. https://doi.org/10.1056/NEJM198902023200501

Sperling RI, Benincaso AI, Knoell CT, Larkin JK, Austen KF, Robinson DR. Dietary omega-3 polyunsaturated fatty acids inhibit phosphoinositide formation and chemotaxis in neutrophils. J Clin Invest. 1993;91(2):651-60. https://doi.org/10.1172/JCI116245

Goldman DW, Pickett WC, Goetzl EJ. Human neutrophil chemotactic and degranulating activities of leukotriene B5 (LTB5) derived from eicosapentaenoic acid. Biochem Biophys Res Commun. 1983;117(1):282-8. https://doi.org/10.1016/0006-291X(83)91572-3

Lee TH, Menica-Huerta JM, Shih C, Corey EJ, Lewis RA, Austen KF. Characterization and biologic properties of 5,12-dihydroxy derivatives of eicosapentaenoic acid, including leukotriene B5 and the double lipoxygenase product. J Biol Chem. 1984;259(4):2383-9.

U.S. Food and Drug Administration. 21 CFR Part 184 [Docket No. 1999P-5332]. Federal Register. 2001; 69:2313-7.

U. S. Food and Drug Administration. Letter Regarding Dietary Supplement Health Claim for Omega-3 Fatty Acids and Coro-Nary Heart Disease. [Docket No. 91 N-0103]. 2000.

Publicado

2018-10-17

Como Citar

Coqueiro, D. P., Bueno, P. C. dos S., & Simões, M. de J. (2018). Supplementation with fish oil reduces morphological aspects of muscle damage induced by intense exercise in rats. Scientia Medica, 28(4), ID31470. https://doi.org/10.15448/1980-6108.2018.4.31470

Edição

Seção

Artigos Originais

Artigos mais lidos pelo mesmo(s) autor(es)