Soft drink consumption reduces food intake in Wistar rats
DOI:
https://doi.org/10.15448/1980-6108.2016.2.21828Palavras-chave:
refrigerantes, consumo alimentar, macronutrientes.Resumo
Consumo de refrigerante reduz a ingestão de alimentos em ratos Wistar
Objetivos: Avaliar o efeito do consumo de refrigerante calórico e não calórico sobre a ingestão alimentar, composição corporal, massa corporal e parâmetros metabólicos em ratos.
Métodos: Estudo experimental com grupo controle. Trinta ratos Wistar machos foram divididos em três grupos e receberam alimentos e bebidas ad libitum. Os grupos foram os seguintes, conforme o alimento oferecido: Grupo controle – ração padrão e água; Grupo refrigerante calórico – ração padrão, refrigerante calórico e água; e Grupo refrigerante não calórico – ração padrão, refrigerante não calórico e água.
Resultados: Não houve diferença estatística na ingestão total de energia, peso corporal e depósito adiposo entre os grupos. Entretanto, a ingestão de energia da ração foi 45% menor no Grupo refrigerante calórico comparado ao Grupo controle e ao Grupo refrigerante não calórico (198,7±0,7 kJ vs. 349,4±2,0 kJ e 373,0±1,3 kJ, respectivamente), sendo 46% da energia proveniente do refrigerante. O grupo refrigerante calórico consumiu 22% mais carboidrato, especialmente sacarose, comparado ao Grupo controle (P<0,05). A ingestão de macronutrientes não foi diferente entre o Grupo controle e o Grupo refrigerante não calórico, mas o Grupo refrigerante calórico consumiu menos proteína e lipídios que os outros dois (3,5±1,0 g de proteína vs. 6.2±0,1 e 6,7±0,1 g, respectivamente; 0,7±0,01 g de lipídios vs. 1,3±0,02 g e 1,4±0,02 g, respectivamente). O consumo de refrigerante não calórico aumentou a ingestão total de sódio e o consumo de ambos os refrigerantes diminuiu a ingestão de água. Embora a massa corporal tenha variado durante o experimento, não houve diferença significativa entre os grupos ao final do mesmo e, igualmente, não houve diferença no depósito adiposo, glicose, insulina e leptina em jejum, índice de resistência à insulina e perfil lipídico.
Conclusões: A ingestão de ambos os refrigerantes (calórico e não calórico) não afetou a ingestão de energia, composição e massa corporal e parâmetros metabólicos, entretanto aumentou a ingestão de fluidos e diminuiu a de água. A ingestão de refrigerante calórico influenciou a quantidade e qualidade de comida sólida consumida, comprometendo a qualidade da dieta.Downloads
Referências
Malik, VS, Popkin, BM, Bray, GA, Després, JP, Hu, F. Sugar-Sweetened Beverages, Obesity, Type 2 Diabetes Mellitus, and Cardiovascular Disease Risk. Circulation. 2010 Mar 23;121(11):1356-64. http://dx.doi.org/10.1161/CIRCULATIONAHA.109.876185
Vartanian LR, Schwartz MB, Brownell KD. Effects of soft drink consumption on nutrition and health: a systematic review and meta-analysis. Am J Public Health. 2007 Apr;97(4):667-75. http://dx.doi.org/10.2105/AJPH.2005.083782
Bray GA. Soft drink consumption and obesity: it is all about fructose. Curr Opin Lipidol. 2010 Feb;21(1):51-7. http://dx.doi.org/10.1097/MOL.0b013e3283346ca2
Hostmark AT. The Oslo Health Study: Soft drink intake is associated with the metabolic syndrome. Appl Physiol Nutr Metab. 2010 Oct;35(5):635-42. http://dx.doi.org/10.1139/H10-059
Nielsen SJ, Pookin BM. Changes in beverage intake between 1977 and 2001. Am J Prev Med. 2004 Oct;27(3):205-10. http://dx.doi.org/10.1016/j.amepre.2004.05.005
Rivera JA, Barquera S, González-Cossío T, Olaiz G, Sepúlveda J. Nutrition transition in Mexico and in other Latin American Countries. Nutr Rev. 2004 Jul;62(7 Pt 2):S149-57.
http://dx.doi.org/10.1111/j.1753-4887.2004.tb00086.x
Yamada M, Murakami K, Sasaki S, Takahashi, Y, Okubo, H. Soft drink intake is associated with diet quality even among young Japanese women with low soft drink intake. J Am Diet Assoc. 2008 Dec;108(12):1997-2004. http://dx.doi.org/10.1016/j.jada.2008.09.033
Instituto Brasileiro de Geografia e Estatística. Pesquisa de Orçamentos Familiares 2008-2009 [Internet]: aquisição alimentar domiciliar per capita. [Cited 2015 Jul 27]. Available from: http://biblioteca.ibge.gov.br/visualizacao/livros/liv47307.pdf.
Belpoggi F, Soffritti M, Tibaldi E, Falcioni L, Bua L, Trabucco F. Results of long-term carcinogenicity bioassays on Coca-Cola administered to Sprague-Dawley rats. Ann N Y Acad Sci. 2006 Sep;1076:736-52. http://dx.doi.org/10.1196/annals.1371.078
Milei J, Otero Losada M, Gómez Llambí H, Grana DR, Suárez D, Azzato F, Ambrosio G. Chronic cola drinking induces metabolic and cardiac alterations in rats. World J Cardiol. 2011 Apr 26;3(4):111-6. doi: 10.4330/wjc.v3.i4.111. http://dx.doi.org/10.4330/wjc.v3.i4.111
Goularte JF, Ferreira MBC, Sanvitto GL. Effects of food pattern change and physical exercise on cafeteria diet-induced obesity in female rats. Br J Nutr. 2012 Oct 28;108(8):1511-8. http://dx.doi.org/10.1017/S0007114511006933
Swithers SE, Davidson TL. A role for sweet taste: calorie predictive relations in energy regulation by rats. Behav Neurosci. 2008 Feb;122(1):161-73. http://dx.doi.org/10.1037/0735-7044.122.1.161
Souza CG, Riboldi BP, Hansen F, Moreira JD, Souza DG, de Assis AM, Brum LM, Perry ML, Souza DO. Chronic sulforaphane oral treatment accentuates blood glucose impairment and may affect GLUT3 expression in the cerebral cortex and hypothalamus of rats fed with a highly palatable diet. Food Funct. 2013 Aug;4(8):1271-6. http://dx.doi.org/10.1039/c3fo60039d
Souza CG, Böhmer AE, Müller AP, Oses JP, Viola GG, Lesczinski DN, Souza DG, Knorr L, Moreira JD, Lhullier F, Souza DO, Perry ML. Effects of a highly palatable diet on lipid and glucose parameters, nitric oxide, and ectonucleotidases activity. Appl Physiol Nutr Metab. 2010 Oct;35(5):591-7. http://dx.doi.org/10.1139/H10-048
Brasil. Lei Nº 11.794, de 8 de outubro de 2008. Presidência da República, Casa Civil, Subchefia para Assuntos Jurídicos. Estabelece procedimentos para o uso científico de animais. DOU. 2008 Out 10:6.
Lindqvist A, de la Cour CD, Stegmark A, Håkanson R, Erlanson-Albertsson C. Overeating of palatable food is associated with blunted leptin and ghrelin responses. Regul Pept. 2005 Sep 15;130(3):123-32. http://dx.doi.org/10.1016/j.regpep.2005.05.002
Lindqvist A, Baelemans A, Erlanson-Albertsson C. Effects of sucrose, glucose and fructose on peripheral and central appetite signals. Regul Pept. 2008 Oct 9;150(1-3):26-32. http://dx.doi.org/10.1016/j.regpep.2008.06.008
Erlanson-Albertsson, C. How palatable food disrupts appetite regulation. Basic Clin Pharmacol Toxicol. 2005 Aug;97(2):61-73. http://dx.doi.org/10.1111/j.1742-7843.2005.pto_179.x
Avena NM, Rada P, Hoebel BG. Evidence for sugar addiction: behavioral and neurochemical effects of intermittent, excessive sugar intake. Neurosci Biobehav Rev. 2008;32(1):20-39. http://dx.doi.org/10.1016/j.neubiorev.2007.04.019
Areias MF, Prada PO. Mechanisms of insulin resistance in the amygdala: influences on food intake. Behav Brain Res. 2015 Apr 1;282:209-17. http://dx.doi.org/10.1016/j.bbr.2015.01.003
Wasilewska M, Adamiec R. Cerebral regulation of insulin secretion and the development of insulin resistance in type 2 diabetes. Adv Clin Exp Med. 2012 Nov-Dec;21(6):695-703.
Janssen P, Vanden Berghe P, Verschueren S, Lehmann A, Depoortere I, Tack J. Review article: the role of gastric motility in the control of food intake. Aliment Pharmacol Ther. 2011 Apr;33(8):880-94. http://dx.doi.org/10.1111/j.1365-2036.2011.04609.x
Mayer J, Thomas DW. Regulation of food intake and obesity. Science. 1967 Apr 21;156(3773):328-37. http://dx.doi.org/10.1126/science.156.3773.328
Chaput JP, Tremblay A. The glucostatic theory of appetite control and the risk of obesity and diabetes. Int J Obes (Lond). 2009 Jan;33(1):46-53. http://dx.doi.org/10.1038/ijo.2008.221
Frank GK1, Oberndorfer TA, Simmons AN, Paulus MP, Fudge JL, Yang TT, Kaye WH. Sucrose activates human taste pathways differently from artificial sweetener. Neuroimage. 2008 Feb 15;39(4):1559-69. http://dx.doi.org/10.1016/j.neuroimage.2007.10.061
Sahoo K, Sahoo B, Choudhury AK, Sofi NY, Kumar R, Bhadoria AS. Childhood obesity: causes and consequences. J Family Med Prim Care. 2015 Apr-Jun;4(2):187-92. http://dx.doi.org/10.4103/2249-4863.154628
Wang ML, Lemon SC, Olendzki B, Rosal MC. Beverage-consumption patterns and associations with metabolic risk factors among low-income Latinos with uncontrolled type 2 diabetes. J Acad Nutr Diet. 2013 Dec;113(12):1695-703. http://dx.doi.org/10.1016/j.jand.2013.06.351
Eyles H, Ni Mhurchu C, Nghiem N, Blakely T. Food pricing strategies, population diets, and non-communicable disease: a systematic review of simulation studies. PLoS Med. 2012;9(12):e1001353. http://dx.doi.org/10.1371/journal.pmed.1001353
Gardner C. Non-nutritive sweeteners: evidence for benefit vs. risk. Curr Opin Lipidol. 2014 Feb;25(1):80-4. http://dx.doi.org/10.1097/MOL.0000000000000034
Pereira MA. Sugar-sweetened and artificially-sweetened beverages in relation to obesity risk. Adv Nutr. 2014 Nov 14;5(6):797-808. http://dx.doi.org/10.3945/an.114.007062
O'Donnell M, Mente A, Yusuf S. Sodium intake and cardiovascular health. Circ Res. 2015 Mar 13;116(6):1046-57. http://dx.doi.org/10.1161/CIRCRESAHA.116.303771