O uso da Tomografia por Emissão de Pósitrons (pet) no diagnóstico das doenças neurodegenerativas do idoso
DOI:
https://doi.org/10.15448/2357-9641.2017.1.28022Resumen
---Descargas
Citas
Sokoloff L, Reivich M, Kennedy C, et al. The (14 C)-
deoxyglucose method for measurement of local cerebral
glucose utilization: theory, procedure and normal values in
the conscious and anesthetized albino rat. J Neurochem.
;28:897-916.
Pawlik G, Heiss WD. Positron emission tomography and
neuropsychological function. In: Bigler ED, Yeo RA,
Turkheimer E (eds). Neuropsychological function and brain
imaging. New York: Plenum Publ. Corp.; 1989. p. 65-138.
Heiss WD, Zimmermann-Meinzingen S. PET imaging in
the differential diagnosis of vascular dementia. J Neurol Sci.
;322(1-2):268-73.
Mosconi L. Glucose metabolism in normal aging and
Alzheimer’s disease: Methodological and physiological
considerations for PET studies. Clin Transl Imaging.
;1(4):217-33.
Salmon E. Functional brain imaging applications to
differential diagnosis in the dementias. Curr Opin Neurol.
;15(4):439-44.
Mosconi L, et al. FDG-PET changes in brain glucose
metabolism from normal cognition to pathologically
verified Alzheimer’s disease. Eur J Nucl Med Mol Imaging.
;36:811-22.
Herholz K, et al. Discrimination between Alzheimer
Dementia and Controls by Automated Analysis of
Multicenter FDG PET. Neuroimage. 2002;17(1):302-16.
Silverman DH, Small GW, Chang CY, et al. Positron emission
tomography in evaluation of dementia: Regional brain
metabolism and long-term outcome. JAMA. 2001;286(17):
-7.
De Santi S, de Leon MJ, Rusinek H, et al. Hippocampal
formation glucose metabolism and volume losses in MCI
and AD. Neurobiology of aging. 2001;22(4):529-39.
Gauthier S, et al. Mild cognitive impairment. Lancet.
;367:1262-70.
Jeong Y, et al. 18F-FDG PET Findings in Frontotemporal
Dementia: An SPM Analysis of 29 Patients. J Nucl Med.
;46:233-9.
Foster NL, et al. FDG-PET improves accuracy in
distinguishing frontotemporal dementia and Alzheimer’s
disease. Brain. 2007;130:2616-35.
Spehl TS, Hellwig S, Amtage F, et al. Syndrome-Specific
Patterns of Regional Cerebral Glucose Metabolism in
Posterior Cortical Atrophy in Comparison to Dementia
with Lewy Bodies and Alzheimer’s Disease-A [F-18]-Fdg
Pet Study. J Neuroimaging. 2015;25(2):281-8.
Bohnen NI, Koeppe RA, Minoshima S, et al. Cerebral
glucose metabolic features of Parkinson disease and
incident dementia: longitudinal study. J Nucl Med. 2011;
(6):848-55.
Diehl-Schmid J, Grimmer T, Drzezga A, et al. Decline of
cerebral glucose metabolism in frontotemporal dementia:
a longitudinal 18F-FDG-PET-study. Neurobiol aging.
;28(1):42-50.
Mosconi L, et al. Multicenter standardized 18F-FDG
PET diagnosis of mild cognitive impairment, Alzheimer’s
Disease, and other dementias. J Nucl Med. 2008;49(3):
-8.
Gomperts SN, Rentz DM, Moran E, et al. Imaging
amyloid deposition in Lewy body diseases. Neurology.
;71(12):903-10.
Antonini A, et al. Differential diagnosis of parkinsonism
with FDG and PET. Mov Disord. 1998;13:268-74.
Eckert T, et al. FDG PET in the differential diagnosis of
parkinsonian disorders. Neuroimage. 2005;26:912-21.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de Autor
La sumisión de originales para la PAJAR implica la transferencia, por los autores, de los derechos de publicación. El copyright de los artículos de esta revista es el autor, junto con los derechos de la revista a la primera publicación. Los autores sólo podrán utilizar los mismos resultados en otras publicaciones indicando claramente a PAJAR como el medio de la publicación original.
Creative Commons License
Excepto donde especificado de modo diferente, se aplican a la materia publicada en este periódico los términos de una licencia Creative Commons Atribución 4.0 Internacional, que permite el uso irrestricto, la distribución y la reproducción en cualquier medio siempre y cuando la publicación original sea correctamente citada.