Recentes avanços em biomarcadores para diagnóstico, prognóstico e avaliação terapêutica no câncer cervical

Autores

DOI:

https://doi.org/10.15448/1980-6108.2023.1.43033

Palavras-chave:

neoplasias do colo do útero, biomarcadores tumorais, testes genéticos, detecção precoce de câncer

Resumo

INTRODUÇÃO: O câncer cervical é um sério problema de saúde entre as mulheres, principalmente em países de baixa renda. A detecção e o tratamento precoce são fundamentais para o melhor prognóstico e aumentam substancialmente as taxas de cura da doença. Nesse cenário, os biomarcadores podem ser úteis para o rastreio, diagnóstico, avaliação do prognóstico, da resposta à terapia e detecção precoce de recorrência após o tratamento do câncer cervical. Diversos biomarcadores vêm sendo investigados, mas poucas opções estão disponíveis para aplicação clínica.

OBJETIVOS: Revisar os estudos clínicos acerca de biomarcadores para o CC publicados nos últimos 10 anos, com foco no diagnóstico, prognóstico e avaliação do tratamento.

METODOLOGIA: As bases de dados PubMed, Web of Science e Science Direct foram pesquisadas utilizando os descritores “Uterine Cervical Neoplasms” e "Biomarkers". Foram selecionados os artigos originais publicados em inglês ou português, no período de 2011 a 2021. Após uma triagem pelos títulos e resumos dos artigos, aqueles relacionados ao objetivo do estudo foram lidos integralmente para a decisão final de inclusão na revisão. Os trabalhos que atenderam todos os critérios de seleção tiveram seus dados extraídos, principalmente no que se refere ao tipo e objetivo do biomarcador proposto, população de estudo, tamanho da amostra, metodologia utilizada e principais desfechos obtidos.

RESULTADOS: Essa estratégia de busca e seleção resultou em 22 artigos publicados nos últimos 10 anos na temática de interesse. Houve um grande empenho na investigação de biomarcadores séricos para o câncer cervical, com a vantagem de serem minimamente invasivos. Houve destaque para marcadores genéticos e moleculares, como aqueles voltados para a metilação do DNA, detecção de polimorfismos, padrões de expressão de microRNAs e expressão de genes relacionados à proliferação, imortalização e invasão celular.

CONCLUSÃO: Os dados reunidos encorajam a ampliação das pesquisas para aprimorar e validar a eficiência destes biomarcadores em grandes populações. É evidente o potencial dos biomarcadores como estratégia para melhorar o manejo do diagnóstico e tratamento do câncer cervical, sendo que a utilização de marcadores genéticos parece ser o futuro dos biomarcadores para o câncer cervical.

Downloads

Não há dados estatísticos.

Biografia do Autor

Lucimara Rodrigues Carobeli, Universidade Estadual de Maringá

Graduada em Biomedicina e Mestra em Biociências e Fisiopatologia pela Universidade Estadual de Maringá (UEM), em Maringá, PR, Brasil.

Eliane Papa Ambrosio Albuquerque, Universidade Estadual de Maringá

Graduada em Ciências Biológicas pela Universidade Estadual de Maringá (UEM), Mestrado e Doutora em Ciencias Biologicas (Genética) pela Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP). Possui Pós doutorado em Imunogenética e atualmente é professora colaboradora na Universidade Estadual de Maringá (UEM), em Maringá, PR, Brasil.

Referências

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209–49. 3282. https://doi.org/ 10.3322/CAAC.21660 DOI: https://doi.org/10.3322/caac.21660

Instituto Nacional de Câncer José Alencar Gomes da Silva. Estimativa 2020 : incidência de câncer no Brasil / Instituto Nacional de Câncer José Alencar Gomes da Silva. Rio de Janeiro: INCA, 2019. ISBN 978-85-7318-389-4.

Castellsagué X, Diaz M, de Sanjosé S, Muñoz N, Herrero R, Franceschi S, et al. Worldwide human papillomavirus etiology of cervical adenocarcinoma and its cofactors: Implications for screening and prevention. J Natl Cancer Inst. 2006;98(5):303–15. https://doi.org/ 10.1093/jnci/djj067 DOI: https://doi.org/10.1093/jnci/djj067

Burd EM. Human Papillomavirus and Cervical Cancer. Clin Microbiol Rev. 2003;16(1):1. https://doi.org/10.1128/CMR.16.1.1-17.2003 DOI: https://doi.org/10.1128/CMR.16.1.1-17.2003

Woodman C, Collins S, Young L. The natural history of cervical HPV infection: unresolved issues. Nat Rev Cancer. 2007;7(1):11–22. https://doi.org/ 10.1038/NRC2050 DOI: https://doi.org/10.1038/nrc2050

Schiffman M, Doorbar J, Wentzensen N, De Sanjosé S, Fakhry C, Monk BJ, et al. Carcinogenic human papillomavirus infection. Nat Rev Dis Prim. 2016;2. https://doi.org/ 10.1038/nrdp.2016.86 DOI: https://doi.org/10.1038/nrdp.2016.86

Berrington de González A, Sweetland S, Green J. Comparison of risk factors for squamous cell and adenocarcinomas of the cervix: a meta-analysis. Br J Cancer 2004 909. 2004;90(9):1787–91. https://doi.org/ 10.1038/sj.bjc.6601764 DOI: https://doi.org/10.1038/sj.bjc.6601764

Koss LG, Gompel C. Introdução à Citopatologia Ginecológica com Correlações Histológicas e Clínicas. 1st ed. Roca; 2006. 1–216 p.

World Health Organization. WHO guideline for screening and treatment of cervical pre-cancer lesions for cervical cancer prevention, second edition. Geneva; 2021 Jul. ISBN 978-92-4-003082-4

Bettegowda C, Sausen M, Leary RJ, Kinde I, Wang Y, Agrawal N, et al. Detection of Circulating Tumor DNA in Early- and Late-Stage Human Malignancies. Sci Transl Med. 2014;6(224):224ra24. https://doi.org/ 10.1126/SCITRANSLMED.3007094

Duffy M. Tumor markers in clinical practice: a review focusing on common solid cancers. Med Princ Pract. 2013;22(1):4–11. https://doi.org/ 10.1159/000338393

Kori M, Yalcin Arga K. Potential biomarkers and therapeutic targets in cervical cancer: Insights from the meta-analysis of transcriptomics data within network biomedicine perspective. PLoS One. 2018;13(7). https://doi.org/ 10.1371/JOURNAL.PONE.0200717 DOI: https://doi.org/10.1371/journal.pone.0200717

Gadducci A, Sartori E, Maggino T, Landoni F, Zola P, Cosio S, et al. The clinical outcome of patients with stage Ia1 and Ia2 squamous cell carcinoma of the uterine cervix: a Cooperation Task Force (CTF) study. Eur J Gynaecol Oncol. 2003;24(6):513–6.

Li Z, Chen J, Zhao S, Li Y, Zhou J, Liang J, et al. Discovery and validation of novel biomarkers for detection of cervical cancer. Cancer Med. 2021;10(6):2063–74. https://doi.org/ 10.1002/CAM4.3799 DOI: https://doi.org/10.1002/cam4.3799

Stewart BW, Wild CP. World Cancer Report 2014. 3rd ed. Stewart BW, Wild CP, Bray F, Forman D, Ohgaki H, Straif K, et al., editors. International Agency for Research on Cancer; 2014. ISBN: 978-92-832-0429-9

Szalmás A, Kónya J. Epigenetic alterations in cervical carcinogenesis. Semin Cancer Biol. 2009;19(3):144–52. https://doi.org/ 10.1016/J.SEMCANCER.2009.02.011 DOI: https://doi.org/10.1016/j.semcancer.2009.02.011

Taby R, Issa J. Cancer epigenetics. CA Cancer J Clin. 2010;60(6):1–12. https://doi.org/ 10.3322/CAAC.20085 DOI: https://doi.org/10.3322/caac.20085

Esteller M. Epigenetics in cancer. N Engl J Med. 2008;358(11):1148–59. https://doi.org/ 10.1056/NEJMRA072067 DOI: https://doi.org/10.1056/NEJMra072067

Brebi P, Hoffstetter R, Andana A, Ili CG, Saavedra K, Viscarra T, et al. Evaluation of ZAR1 and SFRP4 methylation status as potentials biomarkers for diagnosis in cervical cancer: exploratory study phase I. Biomarkers. 2014;19(3):181–8. https://doi.org/10.3109/1354750X.2013.867535 DOI: https://doi.org/10.3109/1354750X.2013.867535

Pannone G, Bufo P, Santoro A, Franco R, Aquino G, Longo F, et al. WNT pathway in oral cancer: epigenetic inactivation of WNT-inhibitors. Oncol Rep. 2010; 24(4). https://doi.org/ 10.3892/OR.2010.103521. DOI: https://doi.org/10.3892/or.2010.1035

Mulero-Navarro S, Esteller M. Epigenetic biomarkers for human cancer: the time is now. Crit Rev Oncol Hematol. 2008;68(1):1–11. https://doi.org/ 10.1016/J.CRITREVONC.2008.03.001 DOI: https://doi.org/10.1016/j.critrevonc.2008.03.001

Kim M-K, Lee I-H, Lee K-H, Lee YK, So KA, Hong SR, et al. DNA methylation in human papillomavirus-infected cervical cells is elevated in high-grade squamous intraepithelial lesions and cancer. J Gynecol Oncol. 2016;27(2):14. https://doi.org/ 10.3802/JGO.2016.27.E14 DOI: https://doi.org/10.3802/jgo.2016.27.e14

Jung S, Yi L, Jeong D, Kim J, An S, Oh T, et al. The role of ADCYAP1, adenylate cyclase activating polypeptide 1, as a methylation biomarker for the early detection of cervical cancer. Oncol Rep. 2011;25(1):245–52. https://doi.org/ 10.3892/OR_00001067/HTML DOI: https://doi.org/10.3892/or_00001067

Wang R, Leeuwen RW, Boers A, Klip HG, Meyer T, Steenbergen RDM, et al. Genome-wide methylome analysis using MethylCap-seq uncovers 4 hypermethylated markers with high sensitivity for both adeno- and squamous-cell cervical carcinoma. Oncotarget. 2016;7(49):80735–50. https://doi.org/ 10.18632/ONCOTARGET.12598 DOI: https://doi.org/10.18632/oncotarget.12598

Sayed D, Abdellatif M. MicroRNAs in development and disease. Physiol Rev. 2011;91(3):827–87. https://doi.org/ 10.1152/PHYSREV.00006.2010 DOI: https://doi.org/10.1152/physrev.00006.2010

Li M, Li J, Ding X, He M, Cheng SY. microRNA and Cancer. AAPS J. 2010;12(3):309. https://doi.org/10.1208/S12248-010-9194-0 DOI: https://doi.org/10.1208/s12248-010-9194-0

Ning R, Meng S, Wang L, Jia Y, Tang F, Sun H, et al. 6 Circulating miRNAs can be used as Non-invasive Biomarkers for the Detection of Cervical Lesions. J Cancer. 2021;12(17):5106–13. https://doi.org/10.7150/jca.51141 DOI: https://doi.org/10.7150/jca.51141

Berti FCB, Salviano-Silva A, Beckert HC, de Oliveira KB, Cipolla GA, Malheiros D. From squamous intraepithelial lesions to cervical cancer: Circulating microRNAs as potential biomarkers in cervical carcinogenesis. Biochim Biophys acta Rev cancer. 2019;1872(2). https://doi.org/ 10.1016/J.BBCAN.2019.08.001 DOI: https://doi.org/10.1016/j.bbcan.2019.08.001

Liu SS, Chan KKL, Chu DKH, Wei TN, Lau LSK, Ngu SF, et al. Oncogenic microRNA signature for early diagnosis of cervical intraepithelial neoplasia and cancer. Mol Oncol. 2018;12(12):2009. https://doi.org/ 10.1002/1878-0261.12383 DOI: https://doi.org/10.1002/1878-0261.12383

Depianto D, Kerns ML, Dlugosz AA, Coulombe PA. Keratin 17 promotes epithelial proliferation and tumor growth by polarizing the immune response in skin. Nat Genet. 2010;42(10):910–4. https://doi.org/ 10.1038/NG.665 DOI: https://doi.org/10.1038/ng.665

Escobar-Hoyos LF, Yang J, Zhu J, Cavallo JA, Zhai H, Burke S, et al. Keratin 17 in premalignant and malignant squamous lesions of the cervix: proteomic discovery and immunohistochemical validation as a diagnostic and prognostic biomarker. Mod Pathol. 2014;27(4):621–30. https://doi.org/10.1038/MODPATHOL.2013.166 DOI: https://doi.org/10.1038/modpathol.2013.166

Kim YW, Bae SM, Kim YW, Park DC, Lee KH, Liu HB, et al. Target-based molecular signature characteristics of cervical adenocarcinoma and squamous cell carcinoma. Int J Oncol. 2013;43(2):539–47. https://doi.org/ 10.3892/IJO.2013.1961 DOI: https://doi.org/10.3892/ijo.2013.1961

Da Ros VG, Muñoz MW, Battistone MA, Brukman NG, Carvajal G, Curci L, et al. From the epididymis to the egg: participation of CRISP proteins in mammalian fertilization. Asian J Androl. 2015;17(5):711–5. https://doi.org/10.4103/1008-682X.155769 DOI: https://doi.org/10.4103/1008-682X.155769

Zhu J, Zhao R, Xu W, Ma J, Ning X, Ma R, et al. Correlation between reticulum ribosome-binding protein 1 (RRBP1) overexpression and prognosis in cervical squamous cell carcinoma. Biosci Trends. 2020;14(4):279–84. https://doi.org/10.5582/BST.2020.03136 DOI: https://doi.org/10.5582/bst.2020.03136

Zhang Y, Bhat I, Zeng M, Jayal G, Wazer DE, Band H, et al. Human kallikrein 10, a predictive marker for breast cancer. Biol Chem. 2006;387(6):715–21. https://doi.org/ 10.1515/BC.2006.090 DOI: https://doi.org/10.1515/BC.2006.090

Li W, Zhao Y, Ren L, Wu X. Serum human kallikrein 7 represents a new marker for cervical cancer. Med Oncol. 2014;31(10):1–6. https://doi.org/ 10.1007/s12032-014-0208-0 DOI: https://doi.org/10.1007/s12032-014-0208-0

Wen L, Li Y, Jiang Z, Zhang Y, Yang B, Han F. miR-944 inhibits cell migration and invasion by targeting MACC1 in colorectal cancer. Oncol Rep. 2017;37(6):3415–22. https://doi.org/ 10.3892/OR.2017.5611 DOI: https://doi.org/10.3892/or.2017.5611

Park S, Kim J, Eom K, Oh S, Kim S, Kim G, et al. microRNA-944 overexpression is a biomarker for poor prognosis of advanced cervical cancer. BMC Cancer. 2019;19(419). https://doi.org/10.1186/S12885-019-5620-6 DOI: https://doi.org/10.1186/s12885-019-5620-6

Liu Q, Russell MR, Shahriari K, Jernigan DL, Lioni MI, Garcia FU, et al. Interleukin-1β promotes skeletal colonization and progression of metastatic prostate cancer cells with neuroendocrine features. Cancer Res. 2013;73(11):3297–305. https://doi.org/ 10.1158/0008-5472.CAN-12-3970 DOI: https://doi.org/10.1158/0008-5472.CAN-12-3970

Guo Y, Xu F, Lu T, Duan Z, Zhang Z. Interleukin-6 signaling pathway in targeted therapy for cancer. Cancer Treat Rev. 2012;38(7):904–10. https://doi.org/10.1016/J.CTRV.2012.04.007 DOI: https://doi.org/10.1016/j.ctrv.2012.04.007

Song Z, Lin Y, Ye X, Feng C, Lu Y, Yang G, et al. Expression of IL-1α and IL-6 is Associated with Progression and Prognosis of Human Cervical Cancer. Med Sci Monit. 2016;22:4475–81. https://doi.org/10.12659/MSM.898569 DOI: https://doi.org/10.12659/MSM.898569

Teng F, Tian WY, Wang YM, Zhang YF, Guo F, Zhao J, et al. Cancer-associated fibroblasts promote the progression of endometrial cancer via the SDF-1/CXCR4 axis. J Hematol Oncol. 2016;9(1). https://doi.org/ 10.1186/S13045-015-0231-4 DOI: https://doi.org/10.1186/s13045-015-0231-4

Yasmin R, Siraj S, Hassan A, Khan AR, Abbasi R, Ahmad N. Epigenetic regulation of inflammatory cytokines and associated genes in human malignancies. Mediators Inflamm. 2015;2015. https://doi.org/10.1155/2015/201703 DOI: https://doi.org/10.1155/2015/201703

Song Z, Zhang X, Ye X, Feng C, Yang G, Lu Y, et al. High Expression of Stromal Cell-Derived Factor 1 (SDF-1) and NF-κB Predicts Poor Prognosis in Cervical Cancer. Med Sci Monit. 2017;23:151–7. https://doi.org/10.12659/MSM.899319 DOI: https://doi.org/10.12659/MSM.899319

Miao L, St. Clair DK. Regulation of superoxide dismutase genes: implications in disease. Free Radic Biol Med. 2009;47(4):344–56. https://doi.org/10.1016/J.FREERADBIOMED.2009.05.018 DOI: https://doi.org/10.1016/j.freeradbiomed.2009.05.018

Termini L, Boccardo E, Esteves GH, Hirata R, Martins WK, Colo AEL, et al. Characterization of global transcription profile of normal and HPV-immortalized keratinocytes and their response to TNF treatment. BMC Med Genomics. 2008;1(1). https://doi.org/10.1186/1755-8794-1-29 DOI: https://doi.org/10.1186/1755-8794-1-29

Rabelo-Santos SH, Termini L, Boccardo E, Derchain S, Longatto-Filho A, Andreoli MA, et al. Strong SOD2 expression and HPV-16/18 positivity are independent events in cervical cancer. Oncotarget. 2018;9(31):21630–40. https://doi.org/10.18632/ONCOTARGET.24850 DOI: https://doi.org/10.18632/oncotarget.24850

Talarico MCR, Nunes RAL, Silva GÁF, Costa LBE da, Cardoso MR, Esteves SCB, et al. High Expression of SOD2 Protein Is a Strong Prognostic Factor for Stage IIIB Squamous Cell Cervical Carcinoma. Antioxidants. 2021;10(5):724. https://doi.org/ 10.3390/ANTIOX10050724 DOI: https://doi.org/10.3390/antiox10050724

Nie W, Ge H juan, Yang X qun, Sun X, Huang H, Tao X, et al. LncRNA-UCA1 exerts oncogenic functions in non-small cell lung cancer by targeting miR-193a-3p. Cancer Lett. 2016;371(1):99–106. https://doi.org/10.1016/J.CANLET.2015.11.024 DOI: https://doi.org/10.1016/j.canlet.2015.11.024

Yang T, Xia S. Study of the biological function of LncRNA LUCAT1 on cervical cancer cells by targeting miR-199b-5p. Biosci Rep. 2020;40(4). https://doi.org/ 10.1042/BSR20200422 DOI: https://doi.org/10.1042/BSR20200422

Zhang L, Liu Y, Zheng P. Downregulation of ADAMTS18 May Serve as a Poor Prognostic Biomarker for Cervical Cancer Patients. Appl Immunohistochem Mol Morphol. 2018;26(9):670–5. https://doi.org/10.1097/PAI.0000000000000496 DOI: https://doi.org/10.1097/PAI.0000000000000496

Kaushal GP, Shah S V. The new kids on the block: ADAMTSs, potentially multifunctional metalloproteinases of the ADAM family. J Clin Invest. 2000;105(10):1335–7. https://doi.org/ 10.1172/JCI10078 DOI: https://doi.org/10.1172/JCI10078

Zhao S, Yao D, Chen J, Ding N. Circulating miRNA-20a and miRNA-203 for Screening Lymph Node Metastasis in Early Stage Cervical Cancer. Genet Test Mol Biomarkers. 2013;17(8):631–6. https://doi.org/10.1089/GTMB.2013.0085 DOI: https://doi.org/10.1089/gtmb.2013.0085

Duffy MJ. Tumor Markers in Clinical Practice: A Review Focusing on Common Solid Cancers. Med Princ Pract. 2012;22(1):4. https://doi.org/10.1159/000338393 DOI: https://doi.org/10.1159/000338393

Duffy MJ. Role of tumor markers in patients with solid cancers: A critical review. Eur J Intern Med. 2007;18(3):175–84. https://doi.org/10.1016/J.EJIM.2006.12.001 DOI: https://doi.org/10.1016/j.ejim.2006.12.001

Sehouli J, Runnebaum IB, Fotopoulou C, Blohmer U, Belau A, Leber H, et al. A randomized phase III adjuvant study in high-risk cervical cancer: simultaneous radiochemotherapy with cisplatin (S-RC) versus systemic paclitaxel and carboplatin followed by percutaneous radiation (PC-R): a NOGGO-AGO Intergroup Study. Ann Oncol Off J Eur Soc Med Oncol. 2012;23(9):2259–64. https://doi.org/10.1093/ANNONC/MDR628 DOI: https://doi.org/10.1093/annonc/mdr628

Braicu EI, Fotopoulou C, Chekerov R, Richter R, Blohmer J, Kümmel S, et al. Role of serum concentration of VEGFR1 and TIMP2 on clinical outcome in primary cervical cancer: Results of a companion protocol of the randomized, NOGGO-AGO phase III adjuvant trial of simultaneous cisplatin-based radiochemotherapy vs. carboplatin and pac. Cytokine. 2013;61(3):755–8. https://doi.org/10.1016/j.cyto.2013.01.013 DOI: https://doi.org/10.1016/j.cyto.2013.01.013

Li J, Cheng H, Zhang P, Dong Z, Tong H li, Jackie Han JD, et al. Prognostic value of combined serum biomarkers in predicting outcomes in cervical cancer patients. Clin Chim Acta. 2013;424:292–7. https://doi.org/10.1016/j.cca.2013.07.003. DOI: https://doi.org/10.1016/j.cca.2013.07.003

Molina R, Auge JM, Escudero JM, Marrades R, Viñolas N, Carcereny E, et al. Mucins CA 125, CA 19.9, CA 15.3 and TAG-72.3 as Tumor Markers in Patients with Lung Cancer: Comparison with CYFRA 21-1, CEA, SCC and NSE. Tumor Biol. 2008;29(6):371–80. https://doi.org/10.1159/000181180 DOI: https://doi.org/10.1159/000181180

Gadducci A, Tana R, Cosio S, Genazzani AR. The serum assay of tumour markers in the prognostic evaluation, treatment monitoring and follow-up of patients with cervical cancer: A review of the literature. Crit Rev Oncol Hematol. 2008;66(1):10–20. https://doi.org/ 10.1016/J.CRITREVONC.2007.09.002 DOI: https://doi.org/10.1016/j.critrevonc.2007.09.002

Hidalgo K, Rojas IG, Penissi AB, Rudolph MI. TNFα increases in vitro migration of human HPV18-positive SW756 cervical carcinoma cells. Biocell. 2005;29(3):303–11. https://doi.org/10.32604/BIOCELL.2005.29.303 DOI: https://doi.org/10.32604/biocell.2005.29.303

Zhang Y, Yan H, Li R, Guo Y, Zheng R. High expression of survivin predicts poor prognosis in cervical squamous cell carcinoma treated with paclitaxel and carboplatin. Medicine (Baltimore). 2019;98(20). https://doi.org/10.1097/MD.0000000000015607 DOI: https://doi.org/10.1097/MD.0000000000015607

Do M, Kwak IH, Ahn JH, Lee IJ, Lee JH. Survivin protects fused cancer cells from cell death. BMB Rep. 2017;50(7):361. https://doi.org/10.5483/BMBREP.2017.50.7.185 DOI: https://doi.org/10.5483/BMBRep.2017.50.7.185

Höckel M, Schlenger K, Aral B, Mitze M, Schäffer U, Vaupel P. Association between Tumor Hypoxia and Malignant Progression in Advanced Cancer of the Uterine Cervix. Cancer Res. 1996;56(19).

Wang GL, Jiang BH, Rue EA, Semenza GL. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A. 1995;92(12):5510–4. https://doi.org/10.1073/PNAS.92.12.5510 DOI: https://doi.org/10.1073/pnas.92.12.5510

Carmeliet P, Dor Y, Herber JM, Fukumura D, Brusselmans K, Dewerchin M, et al. Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature. 1998;394(6692):485–90. https://doi.org/10.1038/28867 DOI: https://doi.org/10.1038/28867

Huang M, Chen Q, Xiao J, Yao T, Bian L, Liu C, et al. Overexpression of hypoxia-inducible factor-1α is a predictor of poor prognosis in cervical cancer: a clinicopathologic study and a meta-analysis. Int J Gynecol Cancer. 2014;24(6):1054–64. https://doi.org/ 10.1097/IGC.0000000000000162 DOI: https://doi.org/10.1097/IGC.0000000000000162

Seeber LMS, Horrée N, Vooijs MAGG, Heintz APM, van der Wall E, Verheijen RHM, et al. The role of hypoxia inducible factor-1alpha in gynecological cancer. Crit Rev Oncol Hematol. 2011;78(3):173–84. https://doi.org/10.1016/J.CRITREVONC.2010.05.003 DOI: https://doi.org/10.1016/j.critrevonc.2010.05.003

Chen Q, Tian W, Huang M, Liu C, Yao T, Guan M. Association Between HIF-1 Alpha Gene Polymorphisms and Response in Patients Undergoing Neoadjuvant Chemotherapy for Locally Advanced Cervical Cancer. Med Sci Monit. 2016;22:3140–6. https://doi.org/ 10.12659/MSM.897486 DOI: https://doi.org/10.12659/MSM.897486

Chen Y, Xiong X, Wang Y, Zhao J, Shi H, Zhang H, et al. Proteomic Screening for Serum Biomarkers for Cervical Cancer and Their Clinical Significance. Med Sci Monit. 2019;25:288–97. https://doi.org/10.12659/MSM.911478 DOI: https://doi.org/10.12659/MSM.911478

Yang J, Xiong X, Liu S, Zhu J, Luo M, Liu L, et al. Identification of novel serum peptides biomarkers for female breast cancer patients in Western China. Proteomics. 2016;16(6):925–34. https://doi.org/10.1002/PMIC.201500321 DOI: https://doi.org/10.1002/pmic.201500321

Ye S, Sun X, Kang B, Wu F, Zheng Z, Xiang L, et al. The kinetic profile and clinical implication of SCC-Ag in squamous cervical cancer patients undergoing radical hysterectomy using the Simoa assay: a prospective observational study. BMC Cancer. 2020;20(138):1–11. https://doi.org/10.1186/S12885-020-6630-0 DOI: https://doi.org/10.1186/s12885-020-6630-0

Howlader N, Noone A, Krapcho M, Miller D, Bishop K, Altekruse S, et al. SEER Cancer Statistics Review, 1975-2013, National Cancer Institute. Bethesda, MD [Internet]. National Cancer Institute. 2016.

Ryu H, Song IC, Choi YS, Yun HJ, Jo DY, Kim JM, et al. ERCC1 expression status predicts the response and survival of patients with metastatic or recurrent cervical cancer treated via platinum-based chemotherapy. Medicine (Baltimore). 2017;96(51). https://doi.org/ 10.1097/MD.0000000000009402 DOI: https://doi.org/10.1097/MD.0000000000009402

Laengsri V, Kerdpin U, C P, Treeratanapiboon L, Nuchnoi P. Cervical Cancer Markers: Epigenetics and microRNAs. Lab Med. 2018;49(2):97–111. https://doi.org/ 10.1093/LABMED/LMX080 DOI: https://doi.org/10.1093/labmed/lmx080

Salvatici M, Achilarre MT, Sandri MT, Boveri S, Vanna Z, Landoni F. Squamous cell carcinoma antigen (SCC-Ag) during follow-up of cervical cancer patients: Role in the early diagnosis of recurrence. Gynecol Oncol. 2016;142(1):115–9. https://doi.org/ 10.1016/J.YGYNO.2016.04.029 DOI: https://doi.org/10.1016/j.ygyno.2016.04.029

He SM, Xing F, Sui H, Wu Y, Wang Y, Wang D, et al. Determination of CA-125 levels in the serum, cervical and vaginal secretions, and endometrium in Chinese women with precancerous disease or endometrial cancer. Med Sci Monit. 2011;17(11):618–25. https://doi.org/10.12659/MSM.882046 DOI: https://doi.org/10.12659/MSM.882046

Gadducci A, Cosio S, Carpi A, Nicolini A, Genazzani AR. Serum tumor markers in the management of ovarian, endometrial and cervical cancer. Biomed Pharmacother. 2004;58(1):24–38. https://doi.org/10.1016/J.BIOPHA.2003.11.003 DOI: https://doi.org/10.1016/j.biopha.2003.11.003

Piao X, Kong TW, Chang SJ, Paek J, Chun M, Ryu HS. Pretreatment serum CYFRA 21-1 level correlates significantly with survival of cervical cancer patients: a multivariate analysis of 506 cases. Gynecol Oncol. 2015;138(1):89–93. https://doi.org/ 10.1016/J.YGYNO.2015.04.012 DOI: https://doi.org/10.1016/j.ygyno.2015.04.012

Pras E, Willemse PHB, Canrinus AA, De Bruijn HWA, Sluiter WJ, Ten Hoor KA, et al. Serum squamous cell carcinoma antigen and CYFRA 21-1 in cervical cancer treatment. Int J Radiat Oncol Biol Phys. 2002;52(1):23–32. https://doi.org/10.1016/S0360-3016(01)01805-3 Kundrod K, Smith C, Hunt B, Schwarz R, Schmeler K, Richards-Kortum R. Advances in technologies for cervical cancer detection in low-resource settings. Expert Rev Mol Diagn. 2019;19(8):695–714. https://doi.org/10.1080/14737159.2019.1648213 DOI: https://doi.org/10.1080/14737159.2019.1648213

Magkana M, Mentzelopoulou P, Magkana E, Pampanos A, Daskalakis G, Domali E, et al. The p16/ki-67 assay is a safe, effective and rapid approach to triage women with mild cervical lesions. PLoS One. 2021;16(6). https://doi.org/10.1371/JOURNAL.PONE.0253045 DOI: https://doi.org/10.1371/journal.pone.0253045

Downloads

Publicado

2023-05-22

Como Citar

Rodrigues Carobeli, L., & Papa Ambrosio Albuquerque, E. (2023). Recentes avanços em biomarcadores para diagnóstico, prognóstico e avaliação terapêutica no câncer cervical. Scientia Medica, 33(1), e43033. https://doi.org/10.15448/1980-6108.2023.1.43033