Glycemic control and its impact on oxidative stress biomarkers in type 2 diabetic patients treated with metformin: a cross-sectional analysis

Autores

DOI:

https://doi.org/10.15448/1980-6108.2019.2.33630

Palavras-chave:

antioxidant capacity, chronic hyperglycemia, glycated hemoglobin, glycemic control, lipid peroxidation, metformin, oxidative stress, type 2 diabetes mellitus.tus tipo 2.

Resumo

AIMS: Evidence shows that diabetic patients may be predisposed to oxidative stress owing to increased glyco-oxidation and lipid peroxidation processes in consequence of chronic hyperglycemia. However, there is dearth of  information whether glycemic control positively affects the antioxidant defense system in type 2 diabetes mellitus (T2DM). We investigated the potential association between glycemic control and oxidative stress biomarkers in controlled and uncontrolled diabetic states.


METHODS: After obtaining ethical clearance, we included patients receiving metformin with glycated hemoglobin A1c ˂7.0% (glycemic control); newly diagnosed T2DM patients without glycemic control with hemoglobin A1c ˃7.0%; and apparently healthy normoglycemic individuals. The following biomarkers were determined: fasting glycemia level, malondialdehyde, glutathione peroxidase activity, catalase activity, total antioxidant capacity and total cholesterol level. The comparisons between the groups were made by ANOVA.


RESULTS: The participants were 260 in number: 80 with controlled diabetes, 80 uncontrolled and 100 controls. All participants were between 40 and 71 years old. Fasting glycemia level and hemoglobin A1c showed significant reductions (p<0.05) in controlled T2DM against the uncontrolled T2DM group, all the same both were significantly higher (p<0.05) against the controls. Likewise, malondialdehyde levels showed significant elevations (p<0.05) correspondingly in both uncontrolled and controlled T2DM against the controls, accompanied with significant reductions (p<0.05) in the antioxidative enzyme activities (glutathione peroxidase activity and catalase activity) and total antioxidant capacity levels against the controls. In addition, total cholesterol was significantly reduced (p<0.05) in controlled T2DM against both uncontrolled T2DM and controls, respectively. There were significant correlations between hemoglobin A1c and oxidative stress biomarkers (p<0.05).


CONCLUSION: There was no remarkable difference in oxidative stress states between glycemic controlled and uncontrolled T2DM, despite differences in their fasting glycemia and glycated hemoglobin levels. Our data, therefore, suggest that chronic hyperglycemia and possibly anti-diabetic medication may both equally associate with oxidative stress. 

DESCRITORES: capacidade antioxidante; hiperglicemia crônica; hemoglobina glicada; controle glicêmico; peroxidação lipídica; metformina; estresse oxidativo; diabetes mellitus tipo 2.

 

***Controle glicêmico e seu impacto em biomarcadores de estresse oxidativo em pacientes diabéticos tipo 2 tratados com metformina: uma análise transversal***


OBJETIVOS: Evidências mostram que pacientes diabéticos podem estar predispostos ao estresse oxidativo devido ao aumento dos processos de oxidação da glicose e peroxidação lipídica em consequência da hiperglicemia crônica. No entanto, há escassez de informações se o controle glicêmico afeta positivamente o sistema de defesa antioxidante no diabetes mellitus tipo 2. Esse estudo investiga a possível associação entre controle glicêmico e biomarcadores de estresse oxidativo em estados glicêmicos controlados e não controlados. 


MÉTODOS: Após a liberação da comissão de ética, o estudo incluiu pacientes em uso de medicação hipoglicemiante (metformina) com hemoglobina glicosilada A1c ˂7,0% (diabetes controlado), pacientes recém-diagnosticados com diabetes mellitus tipo 2 sem controle glicêmico e com hemoglobina A1c ˃7,0% e indivíduos normoglicêmicos aparentemente saudáveis. Foram determinados os seguintes biomarcadores: glicemia de jejum, malonaldeído, atividade da glutationa peroxidase, atividade de catalase, capacidade antioxidante total e nível de colesterol total. A comparação entre os grupos foi feita pela ANOVA 

RESULTADOS: Foram incluídos 260 participantes: 80 com diabetes  controlada, 80 não controlada e 100 controles. Todos os participantes tinham entre 40 e 71 anos. A glicemia de jejum e a hemoglobina glicosilada foram significativamente menores (p<0,05) nos diabéticos controlados comparado aos não controlados, e todos os diabéticos apresentaram valores  significativamente maiores (p<0,05) que os controles. Da mesma forma, os níveis de malonaldeído foram significativamente maiores (p<0,05) nos diabéticos (controlados e não controlados), assim como valores das atividades antioxidantes (glutationa peroxidase e catalase) e nos níveis de capacidade antioxidante foram significativamente menores (p<0,05) frente aos controles. Além disso, o colesterol total foi significativamente menor (p<0,05) nos diabéticos controlados quando comparados aos não controlados e controles, respectivamente. Houve correlações significativas entre a hemoglobina glicosilada e do estresse oxidativo (p<0,05).


CONCLUSÃO: Não houve diferença significativa nos estados de estresse oxidativo entre os diabéticos controlados e não controlados, apesar
das diferenças nos níveis de glicose plasmática e hemoglobina glicosilada. Nossos dados, portanto, sugerem que a hiperglicemia crônica e,
possivelmente, a medicação antidiabética pode associar-se igualmente ao estresse oxidativo.


DESCRITORES: capacidade antioxidante; hiperglicemia crônica; hemoglobina glicada; controle glicêmico; peroxidação lipídica; metformina; estresse oxidativo; diabetes mellitus tipo 2.

Downloads

Não há dados estatísticos.

Biografia do Autor

Ismaila A. Lasisi, Laboratory Unit, Health Centre, Osun State Polytechnic Iree, Osun State

Laboratory Unit, Health Centre, Osun State Polytechnic Iree, Osun State

Kamoru A. Adedokun, Department of Oral Pathology, King Saud University Medical City, DUH, Riyadh, Saudi Arabia; Department of Chemical Pathology, College of Medicine, University of Ibadan, Ibadan, Oyo State

Department of Oral Pathology, King Saud University Medical City, DUH, Riyadh, Saudi Arabia; Department of Chemical Pathology, College of Medicine, University of Ibadan, Ibadan, Oyo State

Musiliu A. Oyenike, Department of Medical Laboratory Science, Faculty of Health Science, Ladoke Akintola University of Technology, Osogbo, Osun State

Department of Medical Laboratory Science, Faculty of Health Science, Ladoke Akintola University of Technology, Osogbo, Osun State

Musa A. Muhibi, Department of Medical Laboratory Science, Edo State University, Iyamho, Edo State

Department of Medical Laboratory Science, Edo State University, Iyamho, Edo State

Ramat T. Kamorudeen, Department of Infant Welfare, General Hospital, Asubiaro, Osogbo, Osun State

Department of Infant Welfare, General Hospital, Asubiaro, Osogbo, Osun State

Waheed A. Oluogun, Department of Morbid Anatomy and Histopathology, Ladoke Akintola University of Technology Teaching Hospital, Osogbo, Osun State

Department of Morbid Anatomy and Histopathology, Ladoke Akintola University of Technology Teaching Hospital, Osogbo, Osun State

Referências

Fakhruddin S, Alanazi W, Jackson KE. Diabetes-induced reactive oxygen species: mechanism of their generation and role in renal injury. J Diabetes Res. 2017;2017:8379327. https://doi.org/10.1155/2017/8379327

Sifuentes-Franco S, Padilla-Tejeda DE, Carrillo-Ibarra S, Miranda-Díaz AG. Oxidative stress, apoptosis, and mitochondrial function in diabetic nephropathy. Int J Endocrinol. 2018;2018:1875870. https://doi.org/10.1155/2018/1875870

Volpe CMO, Villar-Delfino PH, Dos Anjos PMF, Nogueira-Machado JA. Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell Death Dis. 2018;9(2):119. https://doi.org/10.1038/s41419-017-0135-z

Kitada M, Zhang Z, Mima A, King GL. Molecular mechanisms of diabetic vascular complications. J Diabetes Investig. 2010;1(3):77-89. https://doi.org/10.1111/j.2040-1124.2010.00018.x

Beckman JA, Creager MA. Vascular complications of diabetes. Circ Res. 2016;118(11):1771-85. https://doi.org/10.1161/circresaha.115.306884

Trinder P. Glucose assay: a colorimetric enzyme-kinetic method assay. Ann Clin Biochem. 1969;6:24.

Uloko AE, Musa BM, Ramalan MA, Gezawa ID, Puepet FH, Uloko AT, Borodo MM, Sada KB. Prevalence and risk factors for diabetes mellitus in Nigeria: a systematic review and meta-analysis. Diabetes Ther. 2018;9(3):1307-16. https://doi.org/10.1007/s13300-018-0441-1

American Diabetes Association. Classification and diagnosis of diabetes: standards of medical care in diabetes – 2018. Diabetes Care. 2018;41(1):S13-S27. https://doi.org/10.2337/dc18-s002

Nathan DM, Singer DE, Hurxthal K, Goodson JD. The clinical information value of the glycosylated hemoglobin assay. N Engl J Med. 1984;310(6):341-6. https://doi.org/10.1056/nejm198402093100602

Varshney R, Kale RK. Effect of calmodulin antagonist on radiationinduced lipid peroxidation in microsomes. Int J Rad Biol. 1990;58(5):733-43.

Paglia DE, Valentine WN. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med. 1967;70(1):158-69.

Aebi H. Catalase in vitro. Methods Enzymol. 1984;105:121-6.

Benzie IF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem. 1996;239(1):70-6. https://doi.org/10.1006/abio.1996.0292

Allain CC, Poon LS, Chan CS, Richmond W, Fu PC. Enzymatic determination of total serum cholesterol. Clin Chem. 1974;20(4):470-5.

Kassaian SE, Goodarzynejad H, Boroumand MA, Salarifar M, Masoudkabir F, Mohajeri-Tehrani MR, Pourhoseini H, Sadeghian S, Ramezanpour N, Alidoosti M, Hakki E, Saadat S, Nematipour E. Glycosylated hemoglobin (HbA1c) levels and clinical outcomes in diabetic patients following coronary artery stenting. Cardiovasc Diabetol. 2012;11:82. https://doi.org/10.1186/1475-2840-11-82

Pieme CA, Tatangmo JA, Simo G, Nya PCB, Moor VJA, Moukette BM, Nzufo FT, Nono BLN, Sobngwi E. Relationship between hyperglycemia, antioxidant capacity and some enzymatic and non-enzymatic antioxidants in African patients with type 2 diabetes. BMC Res Notes. 2017;10:141. https://doi.org/10.1186/s13104-017-2463-6

Yan LJ. Pathogenesis of chronic hyperglycemia: from reductive stress to oxidative stress. J Diabetes Res. 2014;2014:137919.

Wells-Knecht KJ, Zyzak DV, Litchfield JE, Thorpe SR, Baynes JW. Mechanism of autoxidative glycosylation: identification of glyoxal and arabinose as intermediates in the autoxidative modification of proteins by glucose. Biochemistry. 1995;34(11):3702-9. https://doi.org/10.1021/bi00011a027

Mishra S, Mishra BB. Study of lipid peroxidation, nitric oxide end product, and trace element status in type 2 diabetes mellitus with and without complications. Int J Appl Basic Med Res. 2017;7(2):88-93. https://doi.org/10.4103/2229-516x.205813

ALrefai AA, Alsalamony AM, Fatani SH, Kamel HFM. Effect of variable antidiabetic treatments strategy on oxidative stress markers in obese patients with T2DM. Diabetol Metab Syndr. 2017;9:27. https://doi.org/10.1186/s13098-017-0220-6

Aouacheri O, Saka S, Krim M, Messaadia A, Maidi I. The investigation of the oxidative stress-related parameters in type 2 diabetes mellitus. Can J Diabetes. 2015;39(1):4449. https://doi.org/10.1016/j.jcjd.2014.03.002

Góth L. Catalase deficiencyandtype 2 diabetes. Diabetes.Care 2008;31(12):e93.

Phaniendra A, Jestadi DB, Periyasamy L. Free radicals: properties, sources, targets, and their implication in various diseases. Indian J Clin Biochem. 2014;30(1):11-26. https://doi.org/10.1007/s12291-014-0446-0

Evans JL, Goldfine ID, Maddux BA, Grodsky GM. Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocr Rev. 2002;23(5):599-622. https://doi.org/10.1210/er.2001-0039

Pendyala G, Thomas B, Joshi SR. Evaluation of total antioxidant capacity of saliva in type 2 diabetic patients with and without periodontal disease: a case-control study. N Am J Med Sci. 2013;5(1):51-7. https://doi.org/10.4103/1947-2714.106208

Asmat U, Abad K, Ismail K. Diabetes mellitus and oxidative stress-A concise review. Saudi Pharm J. 2015;24(5): 547-53. https://doi.org/10.1016/j.jsps.2015.03.013

Papatheodorou K, Banach M, Edmonds M, Papanas N, Papazoglou D. Complications of diabetes. J Diabetes Res. 2015;2015:189525. https://doi.org/10.1155/2015/189525

Srivastava KK, Kumar R. Stress, oxidative injury and disease. Indian J Clin Biochem. 2015;30(1):3-10.

Srivastava RAK. Life-style-induced metabolic derangement and epigenetic changes promote diabetes and oxidative stress leading to NASH and atherosclerosis severity. J Diabetes MetabDisord. 2018;17(2):381-91. https://doi.org/10.1007/s40200-018-0378-y

Madsen A, Bozickovic O, Bjune JI, Mellgren G, Sagen JV. Metformin inhibits hepatocellular glucose, lipid and cholesterol biosynthetic pathways by transcriptionally suppressing steroid receptor coactivator 2 (SRC-2). Sci Rep. 2015;5:16430. https://doi.org/10.1038/srep16430

Sliwinska A, Drzewoski J. Molecular action of metformin in hepatocytes: an updated insight. Curr Diabetes Rev. 2015; 11(3):175-81. https://doi.org/10.2174/1573399811666150325233108

van Stee MF, de Graaf AA, Groen AK. Actions of metformin and statins on lipid and glucose metabolism and possible benefit of combination therapy. Cardiovasc Diabetol. 2018;17(1):94. https://doi.org/10.1186/s12933-018-0738-4

Downloads

Publicado

2019-08-22

Como Citar

Lasisi, I. A., Adedokun, K. A., Oyenike, M. A., Muhibi, M. A., Kamorudeen, R. T., & Oluogun, W. A. (2019). Glycemic control and its impact on oxidative stress biomarkers in type 2 diabetic patients treated with metformin: a cross-sectional analysis. Scientia Medica, 29(2), e33630. https://doi.org/10.15448/1980-6108.2019.2.33630

Edição

Seção

Artigos Originais