Influence of soft-start curing protocol in the degree of conversion of a nanohybrid resin composite
DOI:
https://doi.org/10.15448/1980-6523.2018.1.29828Keywords:
composite resins, polymerization, physical properties.Abstract
OBJECTIVE: To analyze the influence of the soft-start curing protocol in the degree of conversion of a nanohybrid composite.
METHODS: Ten specimens were prepared from the polymerization of the composite resin Llis using two protocols: conventional (1000 mW/cm² for 20 seconds) or gradual (250 mW/cm² for 20 seconds + 1000 mW/cm² for 15 seconds). Then, analyzes were performed using a spectrophotometer and data were subjected to Two-way ANOVA and Holm-Sidak test. The significance level was 5%.
RESULTS: There was no statistical difference between the average resin conversion degree of composite values in the base area and top for both curing protocols (p > 0.05).
CONCLUSION: Therefore, the use of soft-start curing protocol did not interfere in the degree of conversion of a nanohybrid composite.
References
Pallesen U, van Dijken JW. A randomized controlled 30 years follow up of three conventional resin composites in Class II restorations. Dent Mater 2015;31(10):1232-44.
https://doi.org/10.1016/j.dental.2015.08.146
Fronza BM, Rueggeberg FA, Braga RR, Mogilevych B, Soares LE, Martin AA, Ambrosano G, Giannini M. Monomer conversion, microhardness, internal marginal adaptation, and shrinkage stress of bulk-fill resin composites. Dent Mater 2015; 31(12):1542-51.
https://doi.org/10.1016/j.dental.2015.10.001
Ferracane JL, HiltonTJ. Polymerization stress is it clinically meaningful? Dent Mater 2016;32(1):1-10.
https://doi.org/10.1016/j.dental.2015.06.020
Selig D, Haenel T, Hausnerová B, Moeginger B, Labrie D, Sullivan B, Price R B. Examining exposure reciprocity in a resin based composite using high irradiance levels and real-time degree of conversion values. Dent Mater 2015;31(5):583-93.
https://doi.org/10.1016/j.dental.2015.02.010
Cekic-Nagas I, Egilmez F, Ergun G. The effect of irradiation distance on microhardness of resin composites cured with different light curing units. Eur J Dent 2010;4(4):440-6.
Ausiello P, Apicella A, Davidson CL. Effect of adhesive layer properties on stress distribution in composite restorations – a 3D finite element analysis. Dent Mater. 2002;95:295-303.
https://doi.org/10.1016/S0109-5641(01)00042-2
Lim BS, Ferracane JL, Sakaguchi RL, Conson JR. Reduction of polymerization contraction stress for dental composites by two-step light activation. Dent Mater 2002;18(6):436-44.
https://doi.org/10.1016/S0109-5641(01)00066-5
Sakaguchi RL, Peters MCRB, Nelson SR, Douglas WH, Poort HW. Effects of polymerization contraction in composite restorations. J Dent. 1992; 20(3):178-182.
https://doi.org/10.1016/0300-5712(92)90133-W
Verluis A, Tantbirojn D. Theoretical considerations of contraction stress. Compend Contin Educ Dent 1999;1(25):24-32.
Dewaele M, Asmussen E, Peutzfeldt A, Munksgaard EC, Benetti AR, Finné G, Leloup G, Devaux J. Influence of curing protocol on selected properties of light-curing polymers: Degree of conversion, volume contraction, elastic modulus, and glass transition temperature. Dent Mater. 2009;25(12): 1576-84.
https://doi.org/10.1016/j.dental.2009.08.001
Chan DC, Browning WD, Frazier KB, Brackett MG.Clinical evaluation of the soft-start (pulse-delay) polymerization technique in Class I and II composite restorations. Oper Dent 2008;33(3):265-71.
https://doi.org/10.2341/07-120
Mehl A, Hickel R, Kunzelmann KH. Physical properties and gap formation of light-cured composites with and without “soft-start polymerization”. J Dent 1997;25(3-4):321-30.
https://doi.org/10.1016/S0300-5712(96)00044-9
Emami N, Soderholm KJM, Berglund LA. Effect of light power density variations on bulk curing of dental composites. J Dent 2003;31(3):189–96.
Aguiar FHB, Braceiro ALT, Ambrosano GMB, Lovadino JR. Hardness and diametral tensile strength of a hybrid composite resin polymerized with different modes and immersed in ethanol or distilled water media. Dent Mater 2005;21(12):1098-103.
https://doi.org/10.1016/j.dental.2004.11.010
Senawongse P, Pongprueksa P. Surface roughness of nanofill and nanohybrid resin composites after polishing and brushing. J Esthet Restor Dent 2007;19(5):265-73.
https://doi.org/10.1111/j.1708-8240.2007.00116.x
Ferracane JL, Matsumoto H, Okabe T. Time-dependent deformation of composite resins – compositional considerations. J Dent Res 1985;64(11): 1332-1336.
https://doi.org/10.1177/00220345850640111701
Caughman WF, Caughman GB, Shiflett RA, Rueggeberg F, Schuster GS. Correlation of cytotoxicity, filler loading and curing time of dental composites. Biomaterials 1991;12(8):737-40.
https://doi.org/10.1016/0142-9612(91)90022-3
Rueggeberg FA, Craig RG. Correlation of parameters used to stimate monomer conversion in a light-cured composite. J Dent Res 1988;67(6): 932-7.
https://doi.org/10.1177/00220345880670060801
Par M, Lapas-Barisic M, Gamulin O, Panduric V, Spanovic N, Tarle Z.Long Term Degree of Conversion of two Bulk-Fill Composites. Acta stomatol Croa 2016;50(4):292-300.
https://doi.org/10.15644/asc50/4/2
Al-Zain AO, Eckert GJ, Lukic H, Megremis SJ, Platt JA. Degree of conversion and cross-link density within a resin-matrix composite. J Biomed Mater Res Part B 2017;8(00):1-9.
Resende ISL, Bonfim, AGM, Passos VF, Santiago SL. Avaliação indireta do grau de conversão de resina composta utilizando doisprotocolos de fotoativação. Rev abo Nac 2011;19(2):96-100.
Ferracane JL. Developing a more complete underestanding of stresses produced in dental composites during polimeryzation. Dent Mater 2005; 21:36-42.
https://doi.org/10.1016/j.dental.2004.10.004
Obici AC, Sinhoreti MAC, Sobrinho LC, Goes MF, Consani S. Evaluation of depth of cure and knoop hardness in a dental composite photo-activated using different methods. Braz Dent J 2004; 15(3):199-203.
https://doi.org/10.1590/S0103-64402004000300007
Emami N, Soderholm KJM. How light irradiance and curing time affect monomer conversion in light-cured resin composites. EurJOral Sci 2003; 111(6):536-42.
https://doi.org/10.1111/j.0909-8836.2003.00082.x
Franco EB, Lopes LG. Conceitos atuais na polimerização de sistemas restauradores resinosos. Biodonto 2003;1(2):13-55.
Downloads
Published
Issue
Section
License
COPYRIGHT
The submission of originals to Odonto Ciência implies the transfer by the authors of the right for publication. Authors retain copyright and grant the journal right of first publication. If the authors wish to include the same data into another publication, they must cite Odonto Ciência as the site of original publication.
CREATIVE COMMONS LICENSE
As this journal is open access, the articles are allowed free use in scientific and educational applications, with citation of the source.
According to the type of Creative Commons License (CC-BY 4.0) adopted by Odonto Ciência, the user must respect the requirements below.
You are free to:
Share — copy and redistribute the material in any medium or format.
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
However, only under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests Odonto Ciência endorses you or your use.
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.
For more details on the Creative Commons license, please follow the link in the footer of this website.