Probabilities in Experimental Physics: Epistemic Lessons and Challenges
DOI:
https://doi.org/10.15448/1983-4012.2018.1.31461Keywords:
Probability, Measurement, Philosophy of Experimental Physics.Abstract
There is one way with which Nature responds to the questions we direct her about the correctness of our understanding of her ways: by means of experiments. In this paper, the pivotal role probability theory plays in experimental physics is presented: it allows us to combine observations that are seemingly analytically incompatible. The main concepts used for such task are introduced and explained. A brief historical sketch of the development of some of such concepts is drawn and it was used as a case-study to defend the position that physics and philosophy are interlinked affairs. Some philosophical consequences of how the intrinsically probabilistic character of experimentation reverberates in our epistemic access of the world are also drawn.
***Probabilidades em Física Experimental: Lições Epistêmicas e Desafios***
É por meio de experimentos que a Natureza responde às questões que a ela direcionamos sobre a adequação de nosso entendimento sobre seu funcionamento. O papel central que a teoria de probabilidades desempenha em física experimental é, neste artigo, apresentada: esta nos permite combinar observações que parecem, em uma primeira leitura, incompatíveis. Os conceitos principais utilizados para fazê-lo são introduzidos e explicados. Uma breve discussão histórica do desenvolvimento de alguns dos mencionados conceitos é indicada e utilizada como estudo de caso para dar suporte à posição que defende que física e filosofia são atividades entrelaçadas. Algumas consequências filosóficas acerca das implicações do caráter intrinsecamente probabilístico da experimentação para o nosso acesso epistêmico do mundo são, também, apresentadas.
Downloads
References
CRAIG, J. Newton at the Mint. Cambridge: Cambridge University Press, 1946.
DE VILAMIL, R. Newton: The Man. London: Knox, 1931.
EARMAN, J. Bayes or Bust? Cambridge, US: MIT Press, 1992.
HALLIDAY, D.; RESNICK, R.; WALKER, J. Fundamentals of Physics. New Jersey, US: John Wiley & Sons, 2007.
HELENE, O.; TSAI, S.; TEIXEIRA, R. What is a Measurement? Revista Brasileira de Ensino em Física, vol. 13, p. 12-29, 1991.
MANITIUS, K. Des Claudius Ptolemäus Handbuch der Astronomie. Leipzig: Teubner, 1913.
NEURATH, O. Anti-Spengler. Vienna: Callwey, 1921.
NIEVERGELT, Y. A Tutorial History of Least Squares with Applications to Astronomy and Geodesy. Journal of Computational and Applied Mathematics, v. 121, p. 37-72, 2000.
NUSSENZVEIG, H. Curso de Física Básica – vol. 4. São Paulo, Brazil: Blucher, 1998.
PLACKETT, R. Studies in the History of Probability and Statistics VII: The Principle of the Arithmetic Mean. Biometrika, vol. 45, n. 1/2, p. 130-135, 1958.
PLACKETT, R. Studies in the History of Probability and Statistics XXIX: The Discovery of the Method of Least Squares. Biometrika, vol. 59, n. 2, p. 239-251, 1972.
POPPER, K. The Logic of Scientific Discovery. Abingdon-on-Thames: Routledge, 2002.
SACHKOV, Y. Probability in Classical and Quantum Mechanics. Studies in Logic and the Foundations of Mathematics, vol. 104, p. 441-447, 1982.
SKLAR, L. Probability as a Theoretical Concept. Synthese, vol. 40, p. 409-414, 1979.
STIGLER, S. The History of Statistics: The Measurement of Uncertainty before 1900. Cambridge, Massachusetts, Us: Harvard University Press, 1986.
STIGLER, S. Gauss and the Invention of Least Squares. The Annals of Statistics, vol. 9, n. 3, p. 465-474, 1981.
STIGLER, S. Eight Centuries of Sampling Inspection: The Trial of the Pyx. Journal of the American Statistical Association, vol. 72, n. 359, p. 493-500, 1977.
TAYLOR, J. An Introduction to Error Analysis. California, US: University Science Books, 1997.
VON WEIZSÄCKER, C. Probability and Quantum Mechanics. The British Journal for the Philosophy of Science, vol. 24, p. 321-337, 1973.
VUOLO, J. Fundamentos da Teoria de Erros. São Paulo, Brazil: Blucher, 1996.
Downloads
Published
How to Cite
Issue
Section
License
Copyright
The submission of originals to Intuitio implies the transfer by the authors of the right for publication. Authors retain copyright and grant the journal right of first publication. If the authors wish to include the same data into another publication, they must cite Intuitio as the site of original publication.
Creative Commons License
Except where otherwise specified, material published in this journal is licensed under a Creative Commons Attribution 4.0 International license, which allows unrestricted use, distribution and reproduction in any medium, provided the original publication is correctly cited.