Investigation of antioxidant activity of ethanolic extract of the bark of Caesalpinia ferrea in Swiss mice exposed to paracetamol

Authors

DOI:

https://doi.org/10.15448/1980-6108.2023.1.44520

Keywords:

Caesalpinia ferrea, biochemistry, ethanolic extract, oxidative stress, paracetamol

Abstract

Aims: it was evaluated the antioxidant effect of the ethanolic extract of Caesalpinia ferrea bark in a model of oxidative stress induced by paracetamol (PCM).

Methods: male Swiss mice were subdivided into four groups (control; PCM; PCM+extract; extract; n=8) in which a dose of paracetamol (250 mg.kg-1) was administered and after 3 hours the treatment with the extract (100 mg.kg-1/ day) was administered for seven days, via gavage. Oxidative stress biomarkers were determined, such as catalase, glutathione-S-transferase, reduced glutathione, ascorbic acid, thiobarbituric acid reactive substances and carbonylated proteins of liver, kidneys and brain and plasma parameters through the dosage of glucose, cholesterol, triglycerides, aspartate aminotransferase and alanine aminotransferase.

Results: the Caesalpinia ferrea extract was able to reverse the lipid and protein damage caused by the drug in the liver tissue and caused the same effect in the renal and brain tissues in the carbonylated proteins. The extract alone decreased liver glutathione-S-transferase and increased catalase and brain glutathione-S-transferase activity, in addition to lowering glucose and cholesterol, but without altering the triglycerides.

Conclusions: it was possible to conclude that the ethanolic extract of the bark of Caesalpinia ferrea has a good antioxidant activity, probably due to the presence of tannins, in view of the damage caused by the high dose of paracetamol in the samples investigated. However, more studies are needed for a better understanding of the effects of this extract compared to the effects found in this research.

Downloads

Download data is not yet available.

Author Biographies

Ana Paula Simões da Cunha, Federal University of Mato Grosso (UFMT), Sinop, MT, Brazil.

Master in Environmental Science from the Federal University of Mato Grosso (UFMT), Campus of Sinop, MT, Brazil.

Valéria Dornelles Gindri Sinhorin, Federal University of Mato Grosso (UFMT), Sinop, MT, Brazil.

PhD in Toxicology Biochemistry from Federal University of Santa Maria (UFSM), in Santa Maria, RS, Brazil; professor at the Federal University of Mato Grosso (UFMT), Campus of Sinop, MT, Brazil.

Adilson Paulo Sinhorin, Federal University of Mato Grosso (UFMT), Sinop, MT, Brazil.

PhD in Organic Chemistry from Federal University of Santa Maria (UFSM), in Santa Maria, RS, Brazil; professor at the Federal University of Mato Grosso (UFMT), Campus of Sinop, MT, Brazil.

Dr., Instituto Federal Farroupilha (IFFar), Santo Augusto, RS, Brazil.

PhD in Chemistry from the São Paulo State University “Júlio de Mesquita Filho” (IQ Unesp-Araraquara), in São Paulo, SP, Brasil. Professor at the Federal Institute Farroupilha, Campus Santo Augusto, RS, Brazil.

Danieli da Rocha, Federal University of Mato Grosso (UFMT), Sinop, MT, Brazil.

Graduated in Pharmacy from Federal University of Mato Grosso (UFMT), Campus of Sinop, MT, Brazil.

References

Bruning MC, Mosegui GB, Viana CM. A. Utilização da fitoterapia e de plantas medicinais em unidades básicas de saúde nos municípios de Cascavel e Foz do Iguaçu-Paraná: a visão dos profissionais de saúde. Ciênc Saúde Colet. 2012;17(10):2675-85.

Oliveira AK, Oliveira NA, Resende UM, Martins PF. Ethnobotany and traditional medicine of the inhabitants of the Patanal Negro sub-region and the raizeiros of Miranda and Aquidauna, Mato Grosso do Sul, Brazil. Braz J Biol. 2011;719:283-9.

Costa VP, Mayworm MA. Plantas medicinais utilizadas pela comunidade do bairro dos Tenentes - município de Extrema, MG, Brasil. Rev Bras Pl Med. 2011;13(3):282-92.

Gallão MI, Normando LO, Vieira IG, Mendes FN, Ricardo NM, Brito ES Morphological, chemical and rheological properties of the main seed polysaccharide from Caesalpinia ferrea Mart. Ind Crops Prod. 2013;47:58- 62.

Pereira LP, Mota MR, Brizeno LA, Nogueira FC, Ferreira EG, Pereira MG, Assreuy AMS. Modulator effect of a polysaccharide-rich extract from Caesalpinia ferrea stem barks in rat cutaneous wound healing: Role of TNF-, IL-1β, NO, TGF-β. J Ethnopharmacol. 2016;187:213-23.

Dias AM, Rey-Rico A, Oliveira RA, Marceneiro S, Alvarez-Lorenzo C, Concheiro A, Júnior RN, Braga ME, Sousa HC. Wound dressings loaded with an anti-inflammatory jucá (Libidibia ferrea) extract using supercritical carbon dioxide technology. J Supercrit Fluids. 2013;74:34-45.

Lima SM, Araújo LC, Sitônio MM, Freitas AC, Moura SL, Correia MT, Malta DJ, Gonçalves-Silva T. Antiinflammatory and analgesic potential of Caesalpinia ferrea. Braz J Pharmacog. 2012;22(1):169-75.

Wyrepkowski CC, Costa DL, Sinhorin AP, Vilegas W, Grandis RA, Resende FA, Santos LC, Characterization and quantification of the compounds of the ethanolic extract from Caesalpinia ferrea stem bark and evaluation of their mutagenic activity. Molecules. 2014;19(10):16039- 57.

Sousa CC, Gomes SO, Lopes AC, Gomes RL, Britto FB, Lima OS, Valente SE. Comparison of methods to isolate DNA from Caesalpinia ferrea. Genet Mol Res. 2014;13(2):4486-93.

Vasconcelos CF, Maranhão HM, Batista TM, Carneiro EM, Ferreira F, Costa J, Soares LA, Sá MD, Souza TP, Wanderley AG. Hypoglycaemic activity and molecular mechanisms of C. ferrea bark extracts on streptozotocininduced diabetes in Wistars rats. J Ethnopharmacol. 2011;137:1533-41.

Araújo TS, Alencar NL, Amorim EC, Albuquerque UP. New approach to study medicinal plants with tannins and flavonoids contents from the local knowledge. J Ethnopharmacol. 2008;120:72-8.

Zanin JL, Carvalho BA, Martineli OS, Santos MH, Lago JH, Sartorelli P, Viegas-Jr C, Soares MG. Gênero Caesalpinia L. (Caesalpiniaceae): características fitoquímicas e farmacológicas. Molecules. 2012;17(7):7887-902.

Daenen K, Andries A, Mekahli D, Schepdael AV, Jouret F, Bammens B. Oxidative stress in chronic kidney disease. Pediatr Nephrol. 2019;34;975-91.

Singh A, Kukreti R, Saso L, Kukreti S. Oxidative Stress: A key modulator in neurodegenerative diseases. Molecules. 2019;24(8):1583.

Chiurchiù V, Orlacchio A, Maccarrone M. Is modulation of oxidative stress an answer? The state of the art of redox therapeutic actions in neurodegenerative diseases. Oxid Med Cell Longev. 2016;2016:1-11.

Elfawy HÁ, Das B. Crosstalk between mitochondrial dysfunction, oxidative stress, and age related neurodegenerative disease: etiologies and therapeutic strategies. Life Sci. 2019:165-84.

Li M, Wang S, Li X, Kou R, Wang Q, Wang X, ZhaoN, Zeng T, Xie K. Diallyl sulfide treatment protects against acetaminophen-/carbon tetrachloride-induced acute liver injury by inhibiting oxidative stress, inflammation and apoptosis in mice. Toxicol Res. 2019;89(1):67-76.

Cristani M, Speciale A, Mancari F, Arcoraci T, Ferrari D, Fratantonio D, Saija A, Cimino F, Trombetta D. Protective activity of an anthocyanin-rich extract from bilberries and black currants on acute acetaminophen-induced hepatotoxicity in rats. Nat Prod Res. 2016;30:2845-9

Kisaoglu A, Ozogul B, Turan MI, Yilmaz I, Demiryilmaz I, Atamanalp SS, Bakan E, Suleyman, H. Damage induced by paracetamol compared with N-acetylcysteine. J Chin Med Assoc. 2014;77:463-8.

Mazaleuskaya LL, Sangkuhl K, Thorn CF, Fitzgerald GA, Altman RB, Klein TE. PharmGKB summary: pathways of acetaminophen metabolism at the therapeutic versus toxic doses. Pharmacogenet Genomics. 2015;25(8):416- 26.

Bian X, Wang S, Liu J, Zhao Y, Li H, Zhang L, Li P. Hepatoprotective effect of chiisanoside against acetaminophen-induced acute liver injury in mice. Nat Prod Res. 2018;33(18):2704-07.

Karthivashan G, Arulselvan P, Tan SW, Fakurazi S. The molecular mechanism underlying the hepatoprotective potential of Moringa oleifera leaves extract against acetaminophen induced hepatotoxicity in mice. J Funct Foods. 2015;17:115-26.

Ghasemzadeh A, Jaafar HZ, Rahmat A. Antioxidant activities, total phenolics and flavonoids content in two varieties of Malaysia young ginger (Zingiber officinale Roscoe). Molecules. 2010;15:4324-33.

Clesceri LS, Greenberg AE, Eaton AD. Standard methods for examination of water and wastewater. 21th ed. Washington: American Public Health Association; 2005

Singleton VL, Orthofer R, Lamuela-Raventós RS. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteau Reagent. Meth Enzymol. 1999;299:152-78.

Pauletti PM, Castro-Gamboa I, Silva DH, Young MC, Tomazela DM, Eberlin MN, Bolzani VS. New antioxidant C-glucosylxanthone from the stems of Arrabidaea samydoides. J Nat Prod. 2003;66(10):1384-7.

Hostettmann K, Queiros FE, Vieira CP. Princípios ativos de plantas superiores. São Carlos: Ed. UFSCar; 2003.152 p.

Olaleye MT, Rocha BT. Acetaminophen-induced liver damage in mice: Effects of some medicinal plants on the oxidative defense system. Exp Toxicol Pathol. 2008;59:319-27.

Malone MH. The pharmacological evaluation of natural products - general and specific approachs to screening ethnopharmaceuticals. J Ethnopharmacol. 1983;8:127-47.

Nelson DP, Kiesow LA. Enthalphy of decomposition of hydrogen peroxide by catalase at 25 °C (with molar extinction coefficients of H2 O2 solution in the UV). Anal Biochem. 1972;49(2):474-8.

Habig WH, Pabst MJ, Jacoby WB. Glutathione S-transferase, the first enzymatic step in mercapturic acid formation. J Biol Chem. 1974;249(22):7130-9.

Sedlack J, Lindsay RH. Estimation of total, proteinbound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem. 1968(25):192-205.

Roe JH. Chemical determination of ascorbic, dehydroascorbic, and diketogulonic acids. Methods Biochem. Anal. 1954;954(1):115-39.

Buege JA, Aust SD. Microsomal lipid peroxidation. Methods Enzymol. 1978;52(1):302-9.

Yan LJ, Traber MG, Packer L. Spectrophotometric method for determination of carbonyls in oxidatively modified apolipoprotein B of human low-density lipoproteins. Anal Biochem. 1995;228(2):349-51.

Bradford MM. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1-2):248-54.

Roby MH, Sarhan MA, Selim KA, Khalel KI. Evaluation of antioxidant activity, total phenols and phenolic compounds in thyme (Thymus vulgaris L.), sage (Salvia officinalis L.), and marjoram (Origanum majorana L.) extracts. Ind Crops Prod. 2013;43:827-31.

Sousa CM, Silva HR, Vieira-Jr GM, Ayres MC, Costa CL, Araújo DS, Cavalcante LC, Barros ED, Araújo PB, Brandão MS, Chaves MH. Fenóis totais e atividade antioxidante de cinco plantas medicinais. Quím Nova. 2007;30:351-5.

Pessuto MB, Costa IC, Souza AB, Nicoli FM, Mello JCP, Petereit F, Luftmann H. 2009. Atividade antioxidante de extratos e taninos condensados das folhas de Maytenus ilicifolia Mart. ex Reiss. Quím Nova. 2009;32(2):412-16.

Serrano J, Puupponen-Pimi R, Dauer A, Aura AM, Saura-Calixto F. Tannins: current knowledge of food sources, intake, bioavailability and biological effects. Mol Nutr Food Res. 2009.

Basu A, Penugonda K. Pomegranate juice: a hearthealthy fruit juice. Nutr Rev. 2009;67:49-56.

Rahmatullah M, Ferdausi D, Mollik AH, Jahan R, Chowdhury MH, Haque WMA. Survey of medicinal plants used by Kavirajes of Chalna area, Khulna district, Bangladesh. Afr J Tradit Complement Altern Med. 2010;7(2):91-7.

Santos SL, Alves HS, Barros KB, Pessoa CV. Use of medicinal plants by elders of a philanthropic institution. Rev Bras Pesq Ciênc Saúde. 2017;4(2):71-5.

Souza CM, Brandão DO, Silva MS, Palmeira AC, Simões MO, Medeiros AC. Utilização de plantas medicinais com atividade antimicrobiana por usuários do serviço público de saúde em Campina Grande – Paraíba. Rev Bras Pl Med. 2013;15(2):188-93.

Souza CC, Magalhães LM, Costa TB, Bicudo RC, Sinhorin VD, Sinhorin AP. Identificação de flavonoides por LC-MS / MS a partir de extratos de folhas de Caesalpinia ferrea Mart. e avaliação da reversão do estresse oxidativo em camundongos. Rev Bras Pl Med. 2017;19(4):610-8.

Ricci A, Olejar KJ, Parpinello GP, Mattioli AU, Teslić N, Kilmartin PA, Versari A. Antioxidant activity of commercial food grade tannins exemplified in a wine model. Food Addit Contam: Part A. 2016;33(12):1761-74.

Marín L, Miguélez EM, Villar CJ, Lombó F. Bioavailability of dietary polyphenols and gut microbiota metabolism: antimicrobial properties. Biomed Res Int. 2015.

Simões CM, Schenkel EP, Mello JC, Menta LA, Petrovick PR. Farmacognosia da planta ao medicamento. 5th ed. Porto Alegre: Ed. UFRGS; 2003.

Jesus WM, Cunha TN. Estudos das propriedades farmacológicas da espinheirasanta (Mytenus iliciofolia Mart. Ex Reissek) e de suas espécies adulterantes. Rev Saúde Desenvolv. 2012;1(1):20-4.

Thompson MA, Collins PB. Handbook on gallic acid: natural occurrences, antioxidant properties and health implications. 1st ed. New York: Nova Science Publishers; 2013.

Yang YH, Wang Z, Zheng J, Wang R. Protective effects of gallic acid against spinal cord injury-induced oxidative stress. Mol Med Rep. 2015;12(2):3017-24.

Sarjit A, Wang Y, Dykes GA. Antimicrobial activity of gallic acid against thermophilic Campylobacter is strain specific and associated with a loss of calcium ions. Food Microbiol. 2015;46:227-33.

Hseua YC, Chen SC, Lin WH, Hung DZ, Lin MK. Kuo YH, Wang MT, Cho HJ, Wang L, Yang HL. Toona sinensis (leaf extracts) inhibit vascular endothelial growth factor (VEGF)-induced angiogenesis in vascular endothelial cells. J Ethnopharmacol. 2011;134:111-21.

Zeb A. Ellagic acid in suppressing in vivo and in vitro oxidative stresses. Mol Cell Biochem. 2018;448:27-41.

Izzo S, Naponelli V, Bettuzzi S. Flavonoids as epigenetic modulators for prostate cancer prevention. Nutrients. 2020;12:1-24.

Costea T, Nagy P, Ganea C, Szöllősi J, Mocanu MM. Molecular mechanisms and bioavailability of polyphenols in prostate cancer. Int J Mol Sci. 2019;20(5):1062.

Grigoras AG. Catalase immobilization - a review. Biochem Engineering J. 2017;117:1-20.

Glorieux C, Zamocky M, Sandoval JM, Verrax J, Calderon PB. Regulation of catalase expression in healthy and cancerous cells. Free Rad Biol Med. 2015;87:84-97.

Jaeschke H, Ramachandran A. Mechanisms and pathophysiological significance of sterile inflammation during acetaminophen hepatotoxicity. Food Chem Toxicol. 2020;138:111240.

Blieden M, Paramore, LC, Shah D., Ben-Joseph R. A perspective on the epidemiology of acetaminophen exposure and toxicity in the United States. Expert Rev Clin Pharmacol. 2014;7:341-8.

Lancaster EM, Hiatt JR, Zarrinpar A. Acetaminophen hepatotoxicity: na updated review. Arch Toxicol. 2015;89(2):193-9.

Khodayar MJ, Kalantari H, Khorsandi L, Rashno M, Zeidooni L. Betaine protects mice against acetaminophen hepatotoxicity possibly via mitochondrial complex II and glutathione availability. Biomed Pharmacother. 2018;103:1436-45.

Hinson JA, Roberts DW, James LP. Mechanisms of acetaminophen-induced livernecrosis. Handb Exp Pharmacol. 2010;196:369-405.

Ajboye TO, Yakubu MT, Salau AK, Oladiji AT, Akanji MA, Okogun JI. Antioxidant and drug detoxification potential of aqueous extract of Annona senegalensis leaves in carbon tetrachloride-induced hepatocellular damage, Pharm Biol. 2010;48:1361-70.

Hasanein P, Sharifi M. Effects of rosmarinic acid on acetaminophen-induced hepatotoxicity in male Wistar rats. Pharm Biol. 2017;55(1):1809-16.

Guan G, Lan S. Implications of antioxidant systems in inflammatory bowel disease. Biomed Res Int. 2018:1-7.

Driessen MD, Mues S, Vennemann A, Hellack B, Bannuscher A, Vimalakanthan V, Riebeling C, Ossig R, Wiemann M, Schnekenburger J, Kuhlbusch TAJ, Renard B, Luch A, Haase A. Proteomic analysis of protein carbonylation: a useful tool to unravel nanoparticle toxicity mechanisms. Part Fibre Toxicol. 2015;12(36):1-18.

Sidonia B, Horatiu R, Vlad L, Francisc, D, Ciprian O, Cosmin P, Liviu O, Sanda A. Hypothermia effects on liver and kidney oxidative stress parameters in an experimental model of sepsis in rats. J Vet Res. 2020;64(1):187-95.

Priyadarsini KI, Khopde SM, Kumar SS, Mohan H. Free radical studies of ellagic acid, a natural phenolic antioxidant. J Agr Food Chem. 2002;50(7):2200-6.

Suke SG, Shukla A, Mundhada D, Banerjee BD, Mediratta PK. Effect of phosphamidon on cognition and oxidative stress and its modulation by ascorbic acid and 4-chlorodiazepam in rats. Pharmacol Biochem Behav. 2013;103(3):637-42.

Magalhães LM, Sinhorin VDG, Souza CCP, Bicudo RC, Sinhorin AP. Antioxidant activity and flavonoids identification by LC-MS/MS analysis in leaf extract from Trattinnickia rhoifolia willd. Front J Soc Technol Environ Sci. 2019;8(2):13-34.

Hira K, Sultana V, Khatoon N, Ara J, EhteshamulHaque S. Protective effect of crude sulphated polysaccharides from Sargassum swartzii (Turn.) C.Ag. against acetaminophen induced liver toxicity in rats. Clin Phytoscience. 2019;5(14):1-8.

Saenthaweesuk S, Munkong N, Parklak W, Thaeomor A, Chaisakul J, Somparn N. Hepatoprotective and antioxidant effects of Cymbopogon citratus stapf (Lemon grass) extract in paracetamol induced hepatotoxicity in rats. Trop J Pharm Res. 2017;16(1):101-7.

Sobeha M, Mahmoud MF, Abdelfattah MA, Assem HA, El-Shazly M, Wink M. Hepatoprotective and hypoglycemic effects of a tannin rich extract from Ximenia americana var. caffra root. Phytomedicine. 2017;33:36-42.

Krithika R, Verma RJ. Solanum nigrum confers protection against CCl4-induced experimental hepatotoxicity by increasing hepatic protein synthesis and regulation of energy metabolism. Clin Phytoscience. 2019;5:1-8.

Arapitsas P. Hydrolyzable tannin analysis in food. Food Chem. 2012;135(3):1708-17.

Sieniawska E, Baj T. Pharmacognosy: Fundamentals, Applications and Strategies. 1st ed. London: Academic Press; 2017: Chapter 10, Tannins. p. 199-232.

Berawi KN, Bimandama MA. The effect of giving extract etanol of kepok banana peel (Musa acuminata) toward total cholesterol level on male mice (Mus musculus L.) strain deutschland-denken-yoken (ddy) Obese. Biomed Pharmacol J. 2018;11(2):769-74.

He M, Zhang S, Jiao Y, Lin X, Huang J, Chen C, Chen Z, Huang R. Effects and mechanisms of rifampin on hepatotoxicity of acetaminophen in mice. Food Chem Toxicol. 2012;50;3142–3149.

Krata N, Zagozdzon R, Foroncewicz B, Mucha K. Oxidative stress in kidney diseases: the cause or the consequence. Arch Immunol Ther Exp (Warsz). 2018;66(3):211-20.

Liu M, Sun Y, Xu M, Yu X, Zhang Y, Huang S, Ding G, Zhang A, Jia Z. Role of mitochondrial oxidative stress in modulating the expressions of aquaporins in obstructive kidney disease. Am J Physiol Renal Physiol. 2018;314(4):658-66.

Haute GV, Caberlon E, Squizani E, Mesquita FC, Pedrazza L, Martha BA, Melo DA, Cassel E, Czepielewski RS, Bitencourt S, Goettert MI, Oliveira JR. Gallic acid reduces the effect of LPS on apoptosis and inhibits the formation of neutrophil extracellular traps. Toxicol in Vitro. 2015;30:309-17.

Yoon CH, Chung SJ, Lee SW, Park YB, Lee SK, Park MC. Allic acid, a natural polyphenolic acid, induces apoptosis and inhibits proinflammatory gene expressions in rheumatoid arthritis fibroblast-like synoviocytes. Joint Bone Spine. 2013;80(3):274-9.

Pereira DL, Cunha AP, Cardoso CR, Rocha CQ, Vilegas W, Sinhorin AP, Sinhorin VD. Antioxidant and hepatoprotective effects of ethanolic and ethyl acetate stem bark extracts of Copaifera multijuga (Fabaceae) in mice. Acta Amazon. 2018;48(4):347-57.

Garcia-Mesa Y, Colie S, Corpas R, Cristofol R, Comellas F, Nebreda AR, Gimenez-Llort L, Sanfeliu C. Oxidative stress is a central target for physical exercise neuroprotection against pathological brain. Aging J Gerontol A Biol Sci Med Sci. 2016;71:40-9.

Viswanathan G, Dan VM, Radhakrishnan N, Nair AS, Nair AP, Baby S. Protection of mouse brain from paracetamol-induced stress by Centella asiatica methanol extract. J Ethnopharmacol, 2019;236:474-83.

Lalert L, Ji-Au W, Srikam S, Chotipinit T, Sanguanrungsirikul S, Srikiatkhachorn A, Grand SM. Alterations in synaptic plasticity and oxidative stress following long-term paracetamol treatment in rat brain. Neurotox Res. 2020;37(2):455-68.

Mansouri MT, Farbood Y, Sameri MJ, Sarkaki A, Naghizadeh B, Rafeirad M. Neuroprotective effects of oral gallic acid against oxidative stress induced by 6-hydroxydopamine in rats. Food Chemi. 2013;138;1028– 1033.

Saibabu V, Fatima Z, Khan LA, Hameed S. Therapeutic potential of dietary phenolic acids. Adv Pharmacol Sciences. 2015;823539.

Downloads

Published

2023-12-12

How to Cite

Simões da Cunha, A. P., Dornelles Gindri Sinhorin, V., Sinhorin, A. P., Wyrepkowski, C. C., & da Rocha, D. (2023). Investigation of antioxidant activity of ethanolic extract of the bark of Caesalpinia ferrea in Swiss mice exposed to paracetamol. Scientia Medica, 33(1), e44520. https://doi.org/10.15448/1980-6108.2023.1.44520

Most read articles by the same author(s)