Associação entre a diminuição do nível de ferro salivar e a experiência de cárie em crianças

Autores

  • Brunah de Oliveira Buche
  • Bruno Gusso
  • Maria Fernanda Torres
  • Mariana Dalledone
  • Fernanda Mara Paiva Bertoli
  • Juliana Feltrin de Souza
  • Eduardo Pizzatto
  • João Armando Brancher

DOI:

https://doi.org/10.15448/1980-6523.2017.2.28112

Palavras-chave:

Saliva, Ferro salivar, Cáries

Resumo

OBJETIVO: Investigar a associação entre os níveis de ferro na saliva das crianças e sua experiência de cárie.
MÉTODOS: Realizamos um estudo caso-controle envolvendo 186 crianças saudáveis de 11 a 14 anos. O número de dentes cariados, perdidos e obturados (CPO-D) foi estimado de acordo com o Projeto Saúde Bucal Brasil (SBBrasil) e as crianças foram divididas em dois grupos: grupo sem cárie (CPO-D=0; n=55) e experiência Grupo de cárie (CPO-D≥1; n=131). A saliva foi coletada de cada indivíduo usando o método de cuspir e analisada quanto ao fluxo estimado de saliva (SSF), pH e concentração de ferro. As variáveis SSF, pH e ferro salivar foram analisadas pelos pressupostos estatísticos de normalidade e homocedasticidade e comparados entre os grupos. Todos os testes foram realizados utilizando os programas estatísticos R (R Core Team, 2016) e SPSS (IBM, EUA), assumindo um nível de significância de 0,05.
RESULTADOS: Não houve diferenças estatisticamente significativas entre os meios de pH entre os grupos (t=-0,0488; p=0,51). Em relação ao ferro salivar, as crianças com experiência em cárie apresentaram valores significativamente mais baixos de ferro salivar do que aqueles que não apresentavam caries (w=5088; p<0,0001). Além disso, os valores de SSF foram diferentes entre as crianças com experiência de cárie e aqueles sem cárie (w=4198; p=0,03).
CONCLUSÃO: os níveis de ferro salivar foram estatisticamente inferiores em crianças com cárie dentária e presumimos que a jogada de ferro salivar desempenha um papel importante na manutenção da saúde bucal.

Biografia do Autor

Brunah de Oliveira Buche

Department of Dentistry, Universidade Positivo,
Curitiba, Paraná, Brazil

Bruno Gusso

Department of Dentistry, Universidade Positivo,
Curitiba, Paraná, Brazil

Maria Fernanda Torres

Department of Anatomy, Universidade Federal do
Paraná, Curitiba, Paraná, Brazil

Mariana Dalledone

Department of Dentistry, Universidade Positivo,
Curitiba, Paraná, Brazil

Fernanda Mara Paiva Bertoli

Department of Dentistry, Universidade Positivo,
Curitiba, Paraná, Brazil

Juliana Feltrin de Souza

Department of Dentistry, Universidade Federal do
Paraná, Curitiba, Paraná, Brazil

Eduardo Pizzatto

Department of Dentistry, Universidade Positivo,
Curitiba, Paraná, Brazil

João Armando Brancher

Department of Dentistry, Universidade Positivo,
Curitiba, Paraná, Brazil

Referências

Malamud D. Saliva as a diagnostic fluid. Dent Clin North Am. 2011; 55(1): 159-78. https://doi.org/10.1016/j.cden.2010.08.004

Puy CL The role of saliva in maintaining oral health and as an aid to diagnosis. Clin Dent. 2006;11:449-55.

Pfaffe T, Cooper-White J, Beyerlein P, Kostner K, Punyadeera C. Diagnostic potential of saliva: current state and future applications. Clin Chem. 2011;57(5):675-87. https://doi.org/10.1373/clinchem.2010.153767

Punyadeera C. Saliva: an alternative to biological fluid for clinical applications. J Dento-Med Sci Res. 2013;1:2-4.

Belstrom D, Jersie-Christensen RR, Lyon D, Damgaard C, Jensen LJ, HOlmstrup P, Olsen JV. Metaproteomics of saliva identifies human protein markers specific for individuals with periodontitis and dental caries compared to orally healthy controls. Peer J. 2016;4:e2433. https://doi.org/10.7717/peerj.2433

Li X, Zhong Y, Jiang X, Hu D, Mateo LR, Morrison BM Jr, Zhang YP. Randomized clinical trial of the efficacy of dentifrices containing 1.5% arginine, an insoluble calcium compound and 1450 ppm fluoride over two years. J Clin Dent. 2015;26(1):7-12.

Watanabe M, Asatsuma M, Ikui A, Ikeda M, Yamada Y, Nomura S, Igarashi A. Measurements of several metallic elements and matrix metalloproteinases (MMPs) in saliva from patients with taste disorder. Chem Senses. 2005;30(2):121-5. https://doi.org/10.1093/chemse/bji007

Fine DH, Furgang D, Beydouin F. Lactoferrin iron levels are reduced in saliva of patients with local aggressive periodontitis. J Periodontol. 2002; 73(6):624-30. https://doi.org/10.1902/jop.2002.73.6.624

Nieuw Amerongen A, Bolscher JG, Veerman EC. Salivary proteins: protective and diagnostic value in cariology? Caries Res. 2004;38(3): 247-53. https://doi.org/10.1159/000077762

Brazililian Oral Health Project. Main Results. Brasília: National Coordination of Oral Health; 2010. 51p. Available from: http://www.dab.saude.gov.br/CNSB/sbbrasil/arquivos/projeto_sb2010_relatorio_final.pdf

Fregoneze AP, de Oliveira Lira Ortega A, Brancher JA, Vargas ET, de Paula Meneses R, Strazzeri Bönecker MJ. Sialometric analysis in young patients with chronic renal insufficiency. Spec Care Dentist. 2013;33(3):118-22.

https://doi.org/10.1111/scd.12008

Buche OB, Gusso B, Bertoli FMP, de Souza JF, Guimarães ATB, Brancher

JA. Estimation of the salivary iron in children with dental caries: a pilot study. Iran J Public Health. 2016;45(8):1083-4.

Rathnayake N, Akerman S, Klinge B, Lundegren N, Jansson H, Tryselius

Y, Sorsa T, Gustafsson A. Salivary biomarkers of oral health: a crosssectional study. J Clin Periodontol. 2013;40(2):140-7. https://doi.org/10.1111/jcpe.12038

Agha-Hosseini F, Mirzaii-Dizgah I, Rahimi A. Correlation of serum and salivary CA15-3 levels in patients with breast cancer. Med Oral Patol Oral Cir Bucal. 2009;14:e521-4. https://doi.org/10.4317/medoral.14.e521

Xiao H, Zhang L, Zhou H, Lee JM, Garon EB, Wong DT. Proteomic analysis of human saliva from lung cancer patients using two-dimensional difference gel electrophoresis and mass spectrometry. Mol Cell Proteomics. 2012;11(2):M111.012112.

Bonamico M, Nenna R, Luparia RP, Perricone C, Montuori M, Castronovo A, Mura S, Turchetti A, Strappini P, Tiberti C. Radioimmunological detection of anti-transglutaminase autoantibodies in human saliva: a useful test to monitor coeliac disease follow-up. Aliment Pharmacol Ther. 2011;28: 364-70. https://doi.org/10.1111/j.1365-2036.2008.03720.x

Fejerskov O. Changing paradigms in concepts on dental caries:

consequences for oral health care. Caries Res. 2004;38(3):182-9. https://doi.org/10.1159/000077753

Johnson-Wimbley TD, Graham DY. Diagnosis and management of iron deficiency anemia in the 21st century. Therap Adv Gastroenterol. 2011;4(3):177-84. https://doi.org/10.1177/1756283X11398736

Braun V. Iron uptake mechanisms and their regulation in pathogenic bacteria. Int J Med Microbiol. 2001;291(5):67-79. https://doi.org/10.1078/1438-4221-00103

Marx JJM. Iron and infection: competition between host and microbes for a precious element. Best Pract Res Clin Haematol. 2002;15:411-26.

https://doi.org/10.1053/beha.2002.0001

Baker HM, Baker EN. Lactoferrin and iron: structural and dynamic aspects of binding and release. Biometals. 2004;17:209-16. https://doi.org/10.1023/B:BIOM.0000027694.40260.70

Puri S, Li R, Ruszaj D, Tati S, Edgerton M. Iron binding modulates candidacidal properties of salivary histatin 5. J Dent Res. 2015;94(1): 201-8. https://doi.org/10.1177/0022034514556709

Wang R, Kaplan A, Guo L, Shi W, Zhou X, Lux R, He X. The influence of iron availability on human salivary microbial community composition. Microb Ecol. 2012;64:152-61. https://doi.org/10.1007/s00248-012-0013-2

Tung SK, Teng LJ, Vaneechoutte M, Chen HM, Chang TC. Identification of

species of Abiotrophia, Enterococcus, Granulicatella, and Streptococcus by sequence analysis of the ribosomal 16S-23S intergenic spacer region. J Med Microbiol. 2007;56:504-13. https://doi.org/10.1099/jmm.0.47027-0

Moslemi M, Sattari M, Kooshki F, Fotuhi F, Modarresi N, Khalili Sadrabad Z, Shadkar MS. Relationship of salivary lactoferrin and lysozyme concentrations with early childhood caries. J Dent Res Dent Clin Dent Prospects. 2015;9(2):109-14. https://doi.org/10.15171/joddd.2015.022

Downloads

Publicado

2017-11-23

Edição

Seção

Artigo Original