Comparison of cleaning methods on debris, surface roughness and static friction of retrieved stainless steel archwires

Autores

  • Fabiano Dalla Lana Mattiello Pontifical Catholic University of Rio Grande do Sul
  • Paulo Ricardo Baccarin Matje Pontifical Catholic University of Rio Grande do Sul
  • Kim Beom Kim Saint Louis University
  • Eduardo Gonçalves Mota Pontifical Catholic University of Rio Grande do Sul
  • Eustáquio Afonso Araújo Saint Louis University
  • Eduardo Martinelli de Lima Pontifical Catholic University of Rio Grande do Sul

DOI:

https://doi.org/10.15448/1980-6523.2017.3.28230

Palavras-chave:

materiais dentários, fios ortodônticos, biofilme, atrito estático.

Resumo

*Comparação de métodos de limpeza nos níveis de detritos, na rugosidade superficial e no atrito estático de arcos de aço inoxidável recuperados*

OBJETIVO: Avaliar a quantidade de detritos, a rugosidade superficial e o atrito estático em arcos de aço inoxidável recuperados após quatro semanas no ambiente intraoral, e comparar os efeitos de diferentes métodos de limpeza.
METODOLOGIA: A amostra incluiu 17 fios de aço novos e 85 segmentos de arcos recuperados, os quais foram alocados em grupos de métodos de limpeza (N=17): recuperados (R); jato de bicarbonato (Jato-B); cuba ultrassônica (U-som); gaze embebida em álcool (Gaze-A); e lã de aço (L-Aço). A quantidade de detritos (MEV), a rugosidade superficial (rugosímetro) e o atrito estático (máquina universal) foram comparados entre fios de aço novos e recuperados, e entre métodos de limpeza.
RESULTADOS: A quantidade de detritos e a rugosidade superficial foram maiores em fios de aço R do que novos (p<0,001), mas o atrito estático não apresentou diferença estatística (p>0,05). A quantidade de detritos (MEV), a rugosidade superficial (rugosímetro) e o atrito estático (máquina universal) foram comparados entre os fios de aço como recebidos e recuperados, e entre os submetidos aos métodos de limpeza.
CONCLUSÃO: Após quatro semanas no ambiente intraoral, os arcos de aço recuperados apresentaram mais detritos e maior rugosidade superficial do que novos. Os métodos de limpeza Gaze-A e L-Aço foram efetivos no controle de detritos, mas somente L-Aço reduziu a rugosidade superficial.

Referências

Ribeiro GLU, Jacob HB. Understanding the basis of space closure in Orthodontics for a more efficient orthodontic treatment. Dental Press J

Orthod. 2016;21(2):115-25. https://doi.org/10.1590/2177- 6709.21.2.115-125.sar

Mezomo M, de Lima ES, de Menezes LM, Weissheimer A, Allgayer S. Maxillary canine retraction with self-ligating and conventional brackets.Angle Orthod. 2011;81:292-7. https://doi.org/10.2319/062510-348.1

Chaturvedi TP, Upadhayay SN. An overview of orthodontic material degradation in oral cavity. Indian J Dent Res. 2010;21:275-84. https://doi.org/10.4103/0970-9290.66648

Daems J, Celis JP, Willems G. Morphological characterization of asreceived and in vivo orthodontic stainless steel archwires. Eur J Orthod.2009;31:260-5. https://doi.org/10.1093/ejo/cjn104

Eliades T, Athanasiou AE. In vivo aging of orthodontic alloys: implications for corrosion potential, nickel release, and biocompatibility. Angle Orthod. 2002;72:222-37.

Marques IS, Araújo AM, Gurgel JA, Normando D. Debris, roughness and friction of stainless steel archwires following clinical use. Angle Orthod.2010;80:521-7. https://doi.org/10.2319/081109-457.1

Normando D, Araújo AM, Marques ISV, Dias CGBT, Miguel JAM. Archwire cleaning after intraoral ageing: the effects on debris, roughness, and friction. Eur J Orthod. 2013;35:223-9. https://doi.org/10.1093/ejo/cjr104

Kumar A, Khanam A, Ghafoor H. Effects of intraoral aging of arch-wires on frictional forces: An ex vivo study. J Orthod Sci. 2016;5(4):109-16. https://doi.org/10.4103/2278-0203.192112

Eliades T. Intraoral aging of orthodontic materials: the picture we miss and its clinical relevance. Am J Orthod Dentofacial Orthop. 2005;127:403-12. https://doi.org/10.1016/j.ajodo.2004.09.015

Eliades T, Eliades G, Athanasiou AE, Bradley TG. Surface characterization of retrieved NiTi orthodontic archwires. Eur J Orthod. 2000;22:317-26. https://doi.org/10.1093/ejo/22.3.317

Perakaki K, Mellor AC, Qualtrough A J. Comparison of an ultrasonic

cleaner and washer disinfector in the cleaning of endodontic files. J Hosp Infect. 2007;67:355-9. https://doi.org/10.1016/j.jhin.2007.09.009

Van Eldik DA, Zilm PS, Rogers AH, Marin PD. A SEM evaluation of debris removal from endodontic files after cleaning and steam sterilization procedures. Aust Dent J. 2004;49:128-35. https://doi.

org/10.1111/j.1834-7819.2004.tb00061.x

Yanase Y, Ioi H, Nishioka M, Takahashi I. Effects of sliding velocity on

friction. An in vitro study at extremely low sliding velocity approximating orthodontic tooth movement. Angle Orthod. 2014;84:451-8. https://doi.org/10.2319/060513-427.1

Regis S Jr, Soares P, Camargo ES, Guariza Filho O, Tanaka O, Maruo

H. Biodegradation of orthodontic metallic brackets and associated implications for friction. Am J Orthod Dentofacial Orthop. 2011;140:501-9. https://doi.org/10.1016/j.ajodo.2011.01.023

Khambay B, Millet D, McHugh S. Archwire seating forces produced by

different ligation methods and their effect on frictional resistance. Eur J Orthod. 2005;27:302-8. https://doi.org/10.1093/ejo/cji008

Filho JC, Consolmagno AV, de Araújo CM, Brunet MD, Rosa EA, Tanaka OM. Effect of sodium bicarbonate air abrasive polishing on resistance to sliding during tooth alignment and leveling: An in vitro study. Eur J Gen Dent. 2012;1:78-84. https://doi.org/10.4103/2278-9626.103381

Articolo LC, Kusy RP. Influence of angulation on the resistance to sliding in fixed appliances. Am J Orthod Dentofacial Orthop. 1999;115:39-51. https://doi.org/10.1016/S0889-5406(99)70314-8

Chimenti C, Franchi L, Di Giuseppe MG, Lucci M. Friction of orthodontic elastomeric ligatures with different dimensions. Angle Orthod. 2005; 75:421-5.

Cunha AC, Marquezan M, Freitas AO, Nojima LI. Frictional resistance of orthodontic wires tied with 3 types of elastomeric ligatures. Braz Oral Res. 2011;25:526-30. https://doi.org/10.1590/S1806-83242011005000015

Nair SV, Padmanabhan R, Janardhanam P. Evaluation of the effect of

bracket and archwire composition on frictional forces in the buccal segments. Indian J Dent Res. 2012;23:203-8. https://doi.org/10.4103/0970-9290.100426

Kusy RP. Ongoing innovations in biomechanics and materials for the new millennium. Angle Orthod. 2000;70:366-76.

Bourauel C, Fries T, Drescher D, Plietsch R. Surface roughness of orthodontic wires via atomic force microscopy, laser specular reflectance and profilometer. Eur J Orthod. 1998;20:79-92. https://doi.org/10.1093/ ejo/20.1.79

Pacheco MR, Jansen WC, Oliveira DD. The role of friction in orthodontics. Dental Press J Orthod. 2012;17(2):170-7. https://doi.org/10.1590/S2176-94512012000200028

Amini F, Rakhshan V, Pousti M, Rahimi H, Shariati M, Aghamohamadi

B. Variations in surface roughness of seven orthodontic archwires: an

SEM-profilometry study. Korean J Orthod. 2012;42:129-37. https://doi. org/10.4041/kjod.2012.42.3.129

Fourie Z, Ozcan M, Sandham A. Effect of dental arch convexity and

type of archwire on frictional forces. Am J Orthod Dentofacial Orthop.

;136:14.e1-7. https://doi.org/10.1016/j.ajodo.2008.06.026

Kusy RP, Whitley JQ. Friction between different wire-bracket configurations and materials. Semin Orthod. 1997;3:166-77. https://doi.org/10.1016/S1073-8746(97)80067-9

Doshi UH, Bhad-Patil WA. Static frictional force and surface roughness of various bracket and wire combinations. Am J Orthod Dentofacial Orthop. 2011;139:74-9. https://doi.org/10.1016/j.ajodo.2009.02.031

Downloads

Publicado

2018-03-23

Edição

Seção

Artigo Original