A rugosidade de superfície de materiais para prótese influencia a formação de biofilmes de Candida albicans

Autores

  • Wander José da Silva Piracicaba Dental School, State University of Campinas
  • Letícia Machado Gonçalves Piracicaba Dental School, State University of Campinas
  • Flávia Carvalho Viu Piracicaba Dental School, State University of Campinas
  • Cristiane Maria Brasil Leal Piracicaba Dental School, State University of Campinas
  • Célia Marisa Rizatti Barbosa Piracicaba Dental School, State University of Campinas
  • Altair Antoninha Del Bel Cury Piracicaba Dental School, State University of Campinas

DOI:

https://doi.org/10.15448/1980-6523.2016.2.15324

Palavras-chave:

Resinas acrílicas, Biofilmes, Candida albicans

Resumo

Objetivo: Este estudo avaliou a influência da rugosidade de superfície (RS) de resina acrílica e materiais de reembasamento na formação de biofilmes de Candida albicans.
Métodos: Discos foram fabricados usando resina acrílica a base de poli(metil metacrilato) e reembasador a base de poli(etil metacrilato), seguindo as instruções dos fabricantes. Os discos tiveram a superfície acabada ou acabada + polida, e RS mensurada. Película de saliva foi formada na superfície dos discos, e biofilmes de C. albicans foram desenvolvidos por 48 horas. Biofilmes foram analisados para contagem, atividade metabólica e estrutura. Os dados foram analisados por ANOVA seguido do teste de Tukey a 5%.
Resultados: Os discos apenas acabados apresentaram maior RS comparado aos acabados + polidos (P<0,001). Discos de resina acabados + polidos formaram biofilmes com menos células quando comparados aos apenas acabados (P<0,001). Não houve diferença para a atividade metabólica (P>0,05). Biofilmes volumosos, espessos e menos rugosos foram formados nos discos acabados (P<0,05). As imagens de confocal revelam o aumento da presença de espaços negros nos biofilmes em discos acabados + polidos.
Conclusão: Menores valores de RS resultaram em reduzido acúmulo de biofilme de C. albicans em ambos materiais para prótese.

Referências

Emami E, Taraf H, de Grandmont P, Gauthier G, de Koninck L, Lamarche C, de Souza RF. The association of denture stomatitis and partial removable dental prostheses: a systematic review. Int J Prosthodont 2012;25: 113-9.

Nevzatoglu EU, Ozcan M, Kulak-Ozkan Y, Kadir T. Adherence of Candida albicans to denture base acrylics and silicone-based resilient liner materials with different surface finishes. Clin Oral Investig 2007;11: 231-6. https://doi.org/10.1007/s00784-007-0106-3

Pereira-Cenci T, Cury AA, Cenci MS, Rodrigues-Garcia RC. In vitro Candida colonization on acrylic resins and denture liners: influence of surface free energy, roughness, saliva, and adhering bacteria. Int J Prosthodont 2007; 20:308-10.

Kang SH, Lee HJ, Hong SH, Kim KH, Kwon TY. Influence of surface characteristics on the adhesion of Candida albicans to various denture lining materials. Acta Odontol Scand 2012. https://doi.org/10.3109/ 00016357.2012.671360

Goncalves LM, Del Bel Cury AA, Sartoratto A, Garcia Rehder VL, Silva WJ. Effects of undecylenic acid released from denture liner on Candida biofilms. J Dent Res 2012;91:985-9. https://doi.org/10.1177/0022034512458689

Quirynen M, Marechal M, Busscher HJ, Weerkamp AH, Darius PL, van Steenberghe D. The influence of surface free energy and surface roughness on early plaque formation. An in vivo study in man. J Clin Periodontol 1990;17:138-44. https://doi.org/10.1111/j.1600-051X.1990. tb01077.x

Radford DR, Challacombe SJ, Walter JD. Denture plaque and adherence of Candida albicans to denture-base materials in vivo and in vitro. Crit Rev Oral Biol Med 1999;10:99-116. https://doi.org/10.1177/1045441199 0100010501

Hahnel S, Henrich A, Rosentritt M, Handel G, Burgers R. Influence of artificial ageing on surface properties and Streptococcus mutans adhesion to dental composite materials. J Mater Sci Mater Med 2010;21:823-33. https://doi.org/10.1007/s10856-009-3894-y

Tari BF, Nalbant D, Dogruman Al F, Kustimur S. Surface roughness and adherence of Candida albicans on soft lining materials as influenced by accelerated aging. J Contemp Dent Pract 2007;8:18-25.

Radford DR, Sweet SP, Challacombe SJ, Walter JD. Adherence of Candida albicans to denture-base materials with different surface finishes. J Dent 1998;26:577-83. https://doi.org/10.1016/S0300-5712(97)00034-1

da Silva WJ, Seneviratne J, Samaranayake LP, Del Bel Cury AA. Bioactivity and architecture of Candida albicans biofilms developed on poly(methyl methacrylate) resin surface. J Biomed Mater Res B Appl Biomater 2010; 94:149-56. https://doi.org/10.1002/jbm.b.31635

Teughels W, Van Assche N, Sliepen I, Quirynen M. Effect of material characteristics and/or surface topography on biofilm development. Clin Oral Implants Res 2006;17 Suppl 2:68-81. https://doi.org/10.1111/j.1600- 0501.2006.01353.x

Nikawa H, Nishimura H, Makihira S, Hamada T, Sadamori S, Samaranayake LP. Effect of serum concentration on Candida biofilm formation on acrylic surfaces. Mycoses 2000;43:139-43. https://doi.org/10.1046/j.1439- 0507.2000.00564.x

Minagi S, Miyake Y, Inagaki K, Tsuru H, Suginaka H. Hydrophobic interaction in Candida albicans and Candida tropicalis adherence to various denture base resin materials. Infect Immun 1985;47:11-4.

da Silva WJ, Seneviratne J, Parahitiyawa N, Rosa EA, Samaranayake LP, Del Bel Cury AA. Improvement of XTT assay performance for studies involving Candida albicans biofilms. Braz Dent J 2008;19:364-9. https://doi.org/10.1590/S0103-64402008000400014

Heydorn A, Nielsen AT, Hentzer M, Sternberg C, Givskov M, Ersboll BK, Molin S. Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology 2000;146(Pt 10):2395-407. https://doi. org/10.1099/00221287-146-10-2395

Vieira AP, Senna PM, Silva WJ, Del Bel Cury AA. Long-term efficacy of denture cleansers in preventing Candida spp. biofilm recolonization on liner surface. Braz Oral Res 2010;24:342-8. https://doi.org/10.1590/S1806- 83242010000300014

Downloads

Publicado

2016-12-26

Edição

Seção

Artigo Original