Efeito dos aminoácidos de cadeia ramificada no músculo imobilizado e no músculo desnervado

Autores/as

  • Vitor Alexandre Pezolato Mestrando do Programa de Pós Graduação em Fisioterapia na Universidade Metodista de Piracicaba
  • Maria Luiza Ozores Polacow Professora Doutora do Programa de Pós-Graduação em Fisioterapia na Universidade Metodista de Piracicaba
  • Camila Limongi Pacheco Bolsista de Iniciação Científica PIBIC/CNPq no Programa de graduação em Fisioterapia na Universidade Metodista de Piracicaba
  • Andre Alves Lico Mascarin Mestrando do Programa de Pós Graduação em Fisioterapia na Universidade Metodista de Piracicaba
  • Carlos Alberto da Silva Professor Doutor do Programa de Pós Graduação em Fisioterapia na Universidade Metodista de Piracicaba

DOI:

https://doi.org/10.15448/1983-652X.2014.3.17705

Palabras clave:

aminoácidos de cadeia ramificada, atrofia muscular, imobilização, ratos

Resumen

Objetivo: Este trabalho teve como objetivo avaliar histologicamente o músculo sóleo imobilizado e desnervado de ratos suplementados com aminoácidos de cadeia ramificada.

Materiais e Métodos: Para a realização da pesquisa foram utilizados 30 ratos navergicus albinus machos, variedade Wistar, com 3 a 4 meses de vida, divididos em 6 grupos (n=5) e denominados: controle (C), desnervado 7 dias (D), imobilizado 7 dias (I), suplementado com aminoácidos de cadeia ramificada 7 dias (BCAA), desnervado suplementado com aminoácidos de cadeia ramificada (D+BCAA) e imobilizado suplementado com aminoácidos de cadeia ramificada (I+BCAA). Os animais desnervados passaram pelo seccionamento do nervo ciático (1 cm). Os animais dos grupos imobilizados receberam uma órtese de resina acrílica acoplada na pata posterior promovendo a imobilização. Após a fase experimental os animais foram eutanasiados e os músculos foram analisados histologicamente. O teste de Shapiro-Wilk avaliou a normalidade dos dados, seguido da análise de variância e, posteriormente, Tukey-Kramer com nível de significância menor de 5%.

Resultados: A suplementação aumentou a área de secção transversa da fibra muscular em 74,94% no grupo I+BCAA e 90,37% no grupo D+BCAA em relação aos grupos I e D, respectivamente. Houve aumento de 97,21% na densidade de área de tecido conjuntivo no grupo BCAA em relação ao grupo C, porém a suplementação promoveu redução de 34,44% no grupo D+BCAA em relação ao grupo D, no entanto, não houve diferença significativa entre os grupos I+BCAA e I.

Conclusão: Observa-se que a utilização dos aminoácidos de cadeia ramificada pode diminuir a atrofia provocada pelo desuso muscular, tanto na condição de desnervação quanto na condição de imobilização.

Citas

Fanzani A, Conraads VM, Penna F, Martinet W. Molecular and cellular mechanisms of skeletal muscle atrophy: an update. J Cachexia Sarcopenia Muscle. 2012; 3(3):163-79.

Kern H, Hofer C, Modlin M, Forstner C, Raschka-Hogler D, Mayr W, Stohr H. Denervated muscles in humans: limitations and problems of currently used functional electrical stimulation training protocols. Artif Organs. 2002; 26(3):216-8.

Kujawa M, Baran W, Jankowska-Steifer E. Quantitative ultrastructural changes in satellite cells of rats immobilization after soleus muscle denervation. Exp and Mol Pathol 2005; 78(1):78-85.

Henriksen EJ, Roodnick KJ, Mondon CE, James DE, Holloszy JO. Effect of denervation or unweighting on GLUT 4 protein in rat soleus muscle. J Appl Physiol. 1991; 70:2322-27

Silva CA, Guirro RRJ, Polacow MLO, Cancelliero KM, Durigan JLQ. Rat hindlimb joint immobilization with acrylic resin orthoses. Braz J Med Biol Res. 2006; 39(7):979-85.

Rogero MM, Tirapegui J. Aspectos atuais sobre aminoácidos de cadeia ramificada e exercício físico. Rev Bras Ciênc Farm. 2008; 44(4):563-75.

Shimomura Y, Harris RA. Metabolism and physiological function of branched-chain amino acids: discussion of session 1. J Nutri. 2006; 136:232-33.

Nicastro H, Da Luz CR, Chaves DF, Bechara LR, Voltarelli VA, Rogero MM, Lancha AHJ. Does branched-chain amino acids supplementation modulate skeletal muscle remodeling through inflammation modulation? possible mechanisms of action. J Nutr Metab. 2012; 20:121-36.

da Luz CR, Nicastro H, Zanchi NE, Chaves DF, Lancha AHJr. Potential therapeutic effects of branched-chain amino acids supplementation on resistance exercise-based muscle damage in humans. J Int Soc Sports Nutr. 2011; 14:8-23.

Solerte SB, Gazzaruso C, Bonacasa R, Rondanelli M, Zamboni M, Basso C, Locatelli E, Schifino N, Giustina A, Fioravanti M. Nutritional supplements with oral amino acid mixtures increases whole‐body lean mass and insulin sensitivity in elderly subjects with sarcopenia. Am J Cardiol. 2008; 101(11A):69E‐77E.

Watanabe RCT. As ações do BCAA associado à estimulação elétrica neuromuscular em músculos imobilizados de ratos [dissertação]. Piracicaba, SP: Universidade Metodista de Piracicaba; 2010.

Shimomura Y, Yakemoto Y, Bajotto G, Sato J, Murakami T, Shimomura N, Kobayashi H, Mawatari K. Nutraceutical effects of branched-chain amino acids on skeletal muscle. J Nutr. 2006; 136(2):529-32.

Coderre L, Monfar MM, Chen KS, Heydrick SJ, Kurowski TG, Ruderman NB, Pilch PF. Alteration in the expression of GLUT 1 and GLUT 4 protein and messenger RNA levels in denervated rat muscle. Endocrinology. 1992; 131(4):1821-5.

Mandarim-De-Lacerda CA, Fernandes-Santos C, Aguila MB. Image analysis and quantitative Morphology. In: Hewitson TD, Darby IA. Histology Protocols. New York: Humana Press; 2010. p. 211-25.

Gualano AB, Bozza T, Lopes de Campos P, Roschel H, dos Santos Costa A, Luiz Marquezi M, Benaltti F, Helbert Lancha Junior A. Branched-chain amino acids supplementation enhances exercise capacity and lipid oxidation during endurance exercise after muscle glycogen depletion. J Sports Med Phys Fitness. 2011; 51(1):82-8.

Gomes ARS, Coutinho EL, França CN, Polonio J, Salvini TF. Effect of one stretch a week applied to the immobilized soleus muscle on rat muscle fiber morphology. Braz J Med And Biol Res. 2004; 37(10):1473-80.

Jarvinen TAH, Jozsa L, Kannus P, Jarvinen TLN, Jarvinen M. Organization and distribution of a intramuscular connective tissue in normal and immobilized skeletal muscle. J Muscle Res Cell Motil. 2002; 23(3):245-54.

Holm L, Van Hall G, Rose AJ, Miller BF, Doessing S, Richter EA, Kjaer M. Contraction intensity and feeding affect collagen and myofibrillar protein synthesis rats differently in human skeletal muscle. Am J Physiol Endocrinol Metab. 2010; 298(2):E257-E269.

Babraj JÁ, Cuthbertson DJ, Smith K, Langberg H, Miller B, Krogsgaard MR, Kjaer M, Rennie MJ. Collagen synthesis in human musculoskeletal tissues and skin. Am J Physiol Endocrinol Metab. 2005 nov;289(5):E864-869.

Tanaka T, Kariya Y, Hoshino Y. Histochemical study on the changes in muscle fibers in relation to the effects of aging on recovery from muscular atrophy caused by disuse in rats. J Orthop Sci. 2004; 9:76-85.

Lima SC, Caierão QM, Durigan JLQ, Schwarzenbeck A, Silva CA, Minamoto VB, Guirro RRJ. Curto período de imobilização provoca alterações morfométricas e mecânicas no músculo de rato. Rev Bras Fisioter. 2007; 11(4):297-302.

Qin L, Appell HJ, Chan KM, Maffulli N. Electrical stimulation prevents immobilization atrophy in skeletal muscle of rabbitd. Arch Phys Med Rehabil. 1997; 78:512-7.

Cancelliero KM, Durigan JLQ, Vieira RP, Silva CA, Polacow MLO. The effect of a low dose or clenbuterol on rat soleus muscle submitted to joint immobilization. Braz J Med Biol Res. 2008; 41(12):1054-58.

Akeson WH, Amiel D, Abel MF, Garfin SR, Woo SL. Effects of immobilization on joints. Clin Orthop Relat Res.1987; 219:28-37.

Amiel D, Woo SL, Harwood FL, Akeson WH. The effect of immobilization on collagen turnover in connective tissue: a biochemical correlation. Acta Orthop Scand. 1982; 53:325-32.

Lewis MI, Bodine SC, Kamangar N, Xu X, Da X, Fournier M. Effect of severe short-term malnutrition on diaphragm muscle signal transduction pathway influencing protein turnover. J Appl Physiol. 2006; 100:1799-806.

Kimball SR, Jefferson LS. New functions for amino acids: effects on gene transcription and translation. Am J Clin Nutr. 2006; 83(2):500S-507S.

Schmalbruch H, Lewis DM. Dynamics of nuclei of muscle fibers and connective tissue cells in normal and denervated rat muscles. Muscle Nerve. 2000; 23(4):617-26.

Norton LE, Layman DK. Leucine regulates translation initiation of protein synthesis in skeletal muscle after exercise. J Nutr. 2006; 136:533S-537S.

Nishitani S, Matsumura T, Fujitani S, Sonaka I, Miura Y, Yagasaki K. Leucine promotes glucose uptake in skeletal muscles of rats. Biochem Biophys Res Commun. 2002; 299:693-96.

Nishitani S, Takehana K, Fujitani S, Sonaka I. Branched-chain amino acids improve glucose metabolism in rats with liver cirrhosis. Am J Physiol Gastrointest Liver Physiol. 2005; 288:G1292-1300.

Amako M, Nemoto K. Influence of water immersion stress on peripheral nerve recovery in the rat. J Orthop Sci. 1998; 3(1):32-41.

Publicado

2014-12-31

Número

Sección

Artigos Originais