Desenvolvimento e validação de medidas psicofísicas de sensibilidade ao contraste de segunda-ordem
DOI:
https://doi.org/10.15448/1980-8623.2020.4.38077Palavras-chave:
sensibilidade ao contraste, segunda ordem, psicofísica, percepção espacial, métodos psicofísicosResumo
A medida de sensibilidade ao contraste (SC) de primeira ordem é frequentemente utilizada para avaliação da percepção espacial. Nosso objetivo foi desenvolver e validar um teste de SC de segunda ordem para aplicação clínica. Modificações metodológicas foram realizadas na rotina psicofísica para redução do tempo de testagem e no primeiro experimento validamos a nova metodologia. Em um segundo experimento, dezesseis participantes foram testados nas mesmas condições do primeiro experimento. As medidas de consistência interna por alfa de Cronbach foram robustas para a medida de primeira ordem sendo α= 0,788, segunda ordem por ruído branco α= 0,668 e por ruído rosa α= 0,717. O desenvolvimento e validação deste novo experimento para medidas de SC de segunda ordem permitirá avançar nos estudos dos mecanismos básicos da percepção de espaço para estímulos complexos, assim como a aplicação clínica em diversas doenças.
Downloads
Referências
Aaen-Stockdale, C., & Bowns, L. (2006). Motion-detection thresholds for first- and second-order gratings and plaids. Vision Research, 46(6-7), 925-931. doi:S0042-6989(05)00527-4 [pii];10.1016/j.visres.2005.10.006 [doi]
Aaen-Stockdale, C., Ledgeway, T., McGraw, P., & Hess, R. F. (2012). Interaction of first- and second-order signals in the extraction of global-motion and optic-flow. Vision Research, 68, 28-39. doi:S0042-6989(12)00205-2 [pii];10.1016/j.visres.2012.07.004 [doi]
Adams, D. L., & Zeki, S. (2001). Functional Organization of Macaque V3 for Stereoscopic Depth. Journal of Neurophysiology, 86(11), 3195-2202. doi:
Allard, R., & Faubert, J. (2013). No second-order motion system sensitive to high temporal frequencies. Journal of Vision, 13(5). doi:13.5.4 [pii];10.1167/13.5.4 [doi]
Amesbury, E. C., & Schallhorn, S. C. (2003). Contrast Sensitivity and Limits of Vision. International Ophthalmology Clinics, 43(2), 31-42. doi:
Atkinson, J., Braddick, O., & Braddick, F. (1974). Acuity and Contrast Sensitivity of Infant Vision. Nature, 247(5440), 403-404. doi:
Banks, M. S., & Salapatek, P. (1976). Contrast Sensitivity Function of Infant Visual-System. Vision Research, 16(8), 867-&. doi:
Barbot, A., Landy, M. S., & Carrasco, M. (2012). Differential effects of exogenous and endogenous attention on second-order texture contrast sensitivity. Journal of Vision, 12(8). doi:6 [pii];10.1167/12/8/6 [doi]
Bartoshuk, L. M., Duffy, V. B., Chapo, A. K., Fast, K., Yiee, J. H., Hoffman, H., & J., Snyder, D. J. (2004). From psychophysics to the clinic: missteps and advances. Food Quality and Preference, 15(7-8), 617-632. https://doi.org/10.1016/j.foodqual.2004.05.007
Bedwell, J. S., Chan, C. C., Cohen, O., Karbi, Y., Shamir, E., & Rassovsky, Y. (2013). The magnocellular visual pathway and facial emotion misattribution errors in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry, 44, 88-93. doi:10.1016/j.pnpbp.2013.01.015
Beige, J. B., Maurage, P., Mangelinckx, C., Leleux, D., Delatte, B., & Constant, E. (2017). Facial decoding in schizophrenia is underpinned by basic visual processing impairments. Psychiatry Research, 255, 167-172. doi:10.1016/j.psychres.2017.04.007
Bourne, J. A., Lui, L., Tweedale, R., & Rosa, M. G. (2004). First- and second-order stimulus length selectivity in New World monkey striate cortex. Eur.Journal of Neuroscience., 19(1), 169-180. doi:3082 [pii]
Brown, A. M., Opoku, F. O., & Stenger, M. R. (2018). Neonatal Contrast Sensitivity and Visual Acuity: Basic Psychophysics. Translational Vision Science & Technology, 7(3). doi:Artn 18 10.1167/Tvst.7.3.18
Brown, J. M., Breitmeyer, B. G., Hale, R. G., & Plummer, R. W. (2018). Contrast Sensitivity Indicates Processing Level of Visual Illusions. Journal of Experimental Psychology-Human Perception and Performance, 44(10), 1557-1566. doi:10.1037/xhp0000554
Butler, P. D., Zemon, V., Schechter, I., Saperstein, A. M., Hoptman, M. J., Lim, K. O., . . . Javitt, D. C. (2005). Early-stage visual processing and cortical amplification deficits in schizophrenia. Arch Gen Psychiatry, 62(5), 495-504. doi:10.1001/archpsyc.62.5.495
Costa, M. F. (2011). Clinical Psychophysical Assessment of the ON- and OFF-Systems of the Magnocellular and Parvocellular Visual Pathways. Neuroscience & Medicine, 2, 330-340. doi:
Dixon, W. J., & Massey, F. J. (1969). Introduction to Statistical Analysis (3rd ed.). New York, N.Y.: McGraw-Hill.
Dovencioglu, D. N., Welchman, A. E., & Schofield, A. J. (2013). Perceptual learning of second order cues for layer decomposition. Vision Research, 77, 1-9. doi:S0042-6989(12)00365-3 [pii];10.1016/j.visres.2012.11.005 [doi]
Dumoulin, S. O., Baker, C. L., Jr., Hess, R. F., & Evans, A. C. (2003). Cortical specialization for processing first- and second-order motion. Cereb.Cortex, 13(12), 1375-1385. doi: https://doi.org/10.1093/cercor/bhg085
Dutta, P. & Horn, P. M. (1981). Low-frequency fluctuations in solids:1fnoise. Reviews of Modern Physics, 53(3), 497-516. https://doi.org/10.1103/RevModPhys.53.497
Field, D. J. (1987). Relations between the statistics of natural images and the response properties of cortical cells. Journal of the Optical Society of America, 4(12), 2379-2394. https://doi.org/10.1364/JOSAA.4.002379
Ginsburg, A. P. (2003). Contrast sensitivity and functional vision. Int Ophthalmol Clin, 43(2), 5-15. doi:10.1097/00004397-200343020-00004
Kawabe, T. & Miura, K. (2005). Mechanism responsible for texture transparency tunes to second-order structures. Vision Research, 45(3), 373-379. https://doi.org/10.1016/j.visres.2004.08.019
Kiorpes, L., Kiper, D. C., & Movshon, J. A. (1993). Contrast sensitivity and vernier acuity in amblyopic monkeys. Vision Research, 33(16), 2301-2311. doi:0042-6989(93)90107-8 [pii]
Koh, H. C., Milne, E., & Dobkins, K. (2010). Spatial Contrast Sensitivity in Adolescents with Autism Spectrum Disorders. Journal of Autism and Developmental Disorders, 40(8), 978-987. doi:10.1007/s10803-010-0953-7
Leguire, L. E., Algaze, A., Kashou, N. H., Lewis, J., Rogers, G. L., & Roberts, C. (2011). Relationship among fMRI, contrast sensitivity and visual acuity. Brain Research, 1367, 162-169. doi:10.1016/j.brainres.2010.10.082
Mukaddes, N. M., Kilincaslan, A., Kucukyazici, G., Sevketoglu, T., & Tuncer, S. (2007). Autism in visually impaired individuals. Psychiatry Clin Neurosci, 61(1), 39-44. doi:10.1111/j.1440-1819.2007.01608.x
O'Donnell, B. F., Potts, G. F., Nestor, P. G., Stylianopoulos, K. C., Shenton, M. E., & McCarley, R. W. (2002). Spatial frequency discrimination in schizophrenia. Journal of Abnormal Psychology, 111(4), 620-625. doi:10.1037//0021-843X.111.4.620
Oruc, I., Landy, M. S., & Pelli, D. G. (2006). Noise masking reveals channels for second-order letters. Vision Research, 46(8-9), 1493-1506. doi:S0042-6989(05)00432-3 [pii];10.1016/j.visres.2005.08.016 [doi]
Pelli, D. G. & Farell, B. (1999). Why use noise? Journal of the Optical Society of America, 16(3), 647-653.
Rogowitz, B. E., Huang, P.-C., Pappas, T. N., & Chen, C.-C. (2009). Pattern masking investigations of the second order visual mechanisms. Paper presented at the Human Vision and Electronic Imaging XIV, San Jose, California, United States. https://doi.org/10.1117/12.805817
Santos, N. A., Oliveira, A. B., Nogueira, R. M., & Simas, M. L. (2006). Mesopic radial frequency contrast sensitivity function for young and older adults. Brazilian Journal of Medical and Biological Research, 39(6), 791-794. doi:S0100-879X2006000600012 [pii];/S0100-879X2006000600012 [doi]
Schofield, A. J., Curzon-Jones, B., & Hollands, M. A. (2017). Reduced sensitivity for visual textures affects judgments of shape-from-shading and step-climbing behaviour in older adults. Exp Brain Res, 235(2), 573-583. https://doi.org/10.1007/s00221-016-4816-0
Schofield, A. J., & Georgeson, M. A. (2003). Sensitivity to contrast modulation: the spatial frequency dependence of second-order vision. Vision Research, 43(3), 243-259. doi:
Schofield, A. J., Rock, P. B., Sun, P., Jiang, X., & Georgeson, M. A. (2010). What is second-order vision for? Discriminating illumination versus material changes. Journal of Vision, 10(9), 2. doi:10.9.2 [pii];10.1167/10.9.2 [doi]
Silverstein, S., Keane, B. P., Blake, R., Giersch, A., Green, M., & Keri, S. (2015). Vision in schizophrenia: why it matters. Frontiers in Psychology, 6. doi:Artn 41 10.3389/Fpsyg.2015.00041
Simmons, D. R., Robertson, A. E., McKay, L. S., Toal, E., McAleer, P., & Pollick, F. E. (2009). Vision in autism spectrum disorders. Vision Research, 49(22), 2705-2739. doi:10.1016/j.visres.2009.08.005
Spiegel, D. P., Reynaud, A., Ruiz, T., Lague-Beauvais, M., Hess, R., & Farivar, R. (2016). First- and second-order contrast sensitivity functions reveal disrupted visual processing following mild traumatic brain injury. Vision Research, 122, 43-50. doi:S0042-6989(16)00054-7 [pii];10.1016/j.visres.2016.03.004 [doi]
Tibber, M. S., Anderson, E. J., Bobin, T., Carlin, P., Shergill, S. S., & Dakin, S. C. (2015). Local and Global Limits on Visual Processing in Schizophrenia. Plos One, 10(2). doi:ARTN e011795110.1371/journal.pone.0117951
Tsui, J. M., & Pack, C. C. (2011). Contrast sensitivity of MT receptive field centers and surrounds. Journal of Neurophysiology, 106(4), 1888-1900. doi:jn.00165.2011 [pii];10.1152/jn.00165.2011 [doi]
Watson, A. B. (1992). Transfer of Contrast Sensitivity in Linear Visual Networks. Visual Neuroscience, 8(1), 65-76. doi:
Weinger, P. M., Zemon, V., Soorya, L., & Gordon, J. (2014). Low-contrast response deficits and increased neural noise in children with autism spectrum disorder. Neuropsychologia, 63, 10-18. doi:10.1016/j.neuropsychologia.2014.07.031
Westrick, Z. M., & Landy, M. S. (2013). Pooling of first-order inputs in second-order vision. Vision Research, 91, 108-117. doi:S0042-6989(13)00214-9 [pii];10.1016/j.visres.2013.08.005 [doi]
Wichmann, F. A., & Hill, J. (2001). The psychometric function: I. Fitting, sampling, and goodness of fit. Perception & Psychophysics, 63(8), 1293-1313. doi:
Wong, E. H., & Levi, D. M. (2005). Second-order spatial summation in amblyopia. Vision Research, 45(21), 2799-2809. doi:S0042-6989(05)00271-3 [pii];10.1016/j.visres.2005.05.020 [doi]
Yang, Y., Wang, Y. J., Zhang, C., Zhu, J. J., & Yu, Y. Q. (2019). Neuroanatomical substrates underlying contrast sensitivity. Quantitative Imaging in Medicine and Surgery, 9(3), 503-509. doi:10.21037/qims.2019.03.03
Zana, Y., & Cavalcanti, C. G. T. (2005). Contrast sensitivity functions to stimuli defined in Cartesian, polar and hyperbolic coordinates. Spatial Vision, 18(1), 85-98.
Zele, A. J., Pokorny, J., Lee, D. Y., & Ireland, D. (2007). Anisometropic amblyopia: spatial contrast sensitivity deficits in inferred magnocellular and parvocellular vision. Investigative Ophthalmology & Visual Science, 48(8), 3622-3631. doi:48/8/3622
Zheng, X. W., Xu, G. H., Wang, Y. Y., Han, C. C., Du, C. H., Yan, W. A., . . . Liang, R. H. (2019). Objective and quantitative assessment of visual acuity and contrast sensitivity based on steady-state motion visual evoked potentials using concentric-ring paradigm. Documenta Ophthalmologica, 139(2), 123-136. doi:10.1007/s10633-019-09702-w
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Psico
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.