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How structuralism can solve 
the ‘access’ problem*

Como o estruturalismo pode resolver  
o problema do ‘acesso’

** Otávio Bueno

Abstract: According to mathematical structuralism, the subject matter 
of mathematics is not the study of mathematical objects, but of 
mathematical structures. By moving away from objects, the structuralist 
claims to be in a position to solve the ‘access’ problem: structuralism 
explains the possibility of mathematical knowledge without requiring 
any access to mathematical objects. Fraser MacBride has challenged 
the structuralist response, and argued that the structuralist faces a 
dilemma in the attempt to solve that problem (MacBride, 2004). In the 
present paper, I argue that MacBride’s dilemma can be resisted, and 
that, particularly in the version articulated by Michael Resnik (Resnik, 
1997), structuralism can solve the ‘access’ problem. I show exactly 
how MacBride’s dilemma fails, and argue that this failure provides an 
opportunity to highlight a significant feature of structuralism: the way 
in which it articulates a fundamentally different picture of mathematical 
epistemology than traditional epistemology would suggest.
Keywords: Mathematical Epistemology. Ontology. Platonism. Structuralism.

Resumo: De acordo com o estruturalismo matemático, a matemática 
não consiste no estudo de objetos matemáticos, mas de estruturas. 
Ao afastar-se dos objetos, o estruturalista reivindica uma posição 
que lhe permite resolver o problema do “acesso”: é possível explicar 
a possibilidade do conhecimento matemático sem exigir qualquer 
acesso aos objetos em questão. Fraser MacBride criticou a resposta 
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estruturalista, argumentando que esta enfrenta um dilema na tentativa 
de resolver o problema em apreço (MacBride, 2004). Neste artigo, 
argumento que o dilema de MacBride pode ser resistido e que, 
especialmente na versão articulada por Michael Resnik (Resnik, 
1997), o estruturalismo pode resolver o problema do “acesso”. Mostro 
exatamente como o dilema de MacBride falha, argumentando que esta 
falha nos fornece uma oportunidade para destacar uma característica 
importante do estruturalismo, a saber: a maneira pela qual ele articula 
uma imagem fundamentalmente diferente da epistemologia matemática 
com relação àquela sugerida pela epistemologia tradicional.
Palavras-chave: Epistemologia Matemática. Estruturalismo. Ontologia. 
Platonismo.

1	 Introduction

A major problem has driven much of recent (and also not so recent) 
philosophy of mathematics: the ‘access’ problem. How can we 

explain mathematical knowledge, or even the reliability of mathematical 
beliefs, given that we have no access to mathematical entities (see 
Benacerraf, 1973 and Field, 1989)? Traditional epistemological 
accounts rely on the otherwise reasonable assumption that the objects 
we study should play a role in the way in which we come to know these 
objects. But without any sort of access to mathematical objects, it seems 
that the epistemology of mathematics has to provide a very different 
account. Structuralists in the philosophy of mathematics, such as Michael 
Resnik (see his, 1997), who insist that the subject matter of mathematics 
is structure (or patterns) rather than objects, argue that they are in a 
good position to solve the access problem. After all, on the structuralist 
picture, no access to mathematical objects is required for the articulation 
of a mathematical epistemology – a different strategy is devised in which 
patterns are central, instead of mathematical entities.

Fraser MacBride has challenged the structuralist response, and 
argued that the structuralist faces a dilemma in the attempt to solve the 
‘access’ problem (MacBride, 2004). In the present paper, I argue that 
MacBride’s dilemma can be resisted. I provide a framework in terms of 
which it becomes clear how structuralism can solve the ‘access’ problem 
– particularly in the version articulated by Resnik. It’s instructive to see, 
however, exactly how MacBride’s dilemma fails, since this provides an 
opportunity to highlight a significant feature of structuralism: it provides 
a fundamentally different picture of mathematical epistemology than the 
one found in traditional epistemological accounts.
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2	 An epistemological challenge: the ‘access’ problem

The crucial feature of mathematical structuralism is to conceptualize 
mathematics as the study of structures, rather than objects. Different 
forms of structuralism provide different accounts of structure (see, e.g., 
Resnik, 1997 and Shapiro, 1997). Roughly speaking, a structure can 
be thought of as a certain domain (that need not be a set) and a family of 
relations formulated on such domain. But, crucially for the structuralist, it 
doesn’t matter which mathematical objects one considers, as long as they 
satisfy the relevant structure, that’s sufficient to explain the possibility 
of mathematical knowledge.

We find this move in Resnik’s defense of structuralism. To explain 
the possibility of mathematical knowledge, Resnik introduces the 
notion of a template, which is a concrete entity – that includes drawings, 
physical models, blueprints – and is meant to link the concrete aspects 
of our experience with abstract patterns (Resnik’s term for structure). 
The crucial idea is that there are structural relations (such as 
isomorphisms) between templates and patterns that allow us to 
represent the latter via the former. In particular, it’s because there 
are such structural relations between patterns and templates that 
mathematicians can use proofs – the process of creating and manipulating 
concrete templates via certain operations – to generate information 
about abstract patterns (Resnik, 1997, p. 229-235). And given that 
mathematicians only have access to templates, no direct access to 
positions in patterns – that is, no direct access to mathematical objects 
– is presupposed in Resnik’s picture.

A significant feature of patterns, on Resnik’s view, is the fact that 
the positions in such patterns are incomplete. This means that there 
is no fact of the matter as to whether these positions have certain 
properties or not. Consider, for example, the second position in the 
natural number pattern (for simplicity, call that position “the number 
2”). It’s not clear that there is a fact of the matter as to whether this 
position – the number 2 – is the same as the corresponding position 
in the real number pattern. In other words, it’s not clear that there is 
a fact of the matter as to whether the number 2 in the natural number 
pattern is the same as the number 2 in the real number structure. After 
all, the properties that a position in a patter has depend on the pattern 
to which it belongs. In the natural number pattern, the number 2 has the 
third position in the pattern – that is, the number 3 – as its immediate 
successor. But this isn’t the case in the context of the real number 
pattern. Of course, in the real number pattern, the immediate successor 
of the number 2 that is also a natural number is the number 3. But to say 

O. Bueno – How structuralism can solve ...

182	 Veritas  |  Porto Alegre, v. 61, n. 1, jan.-abr. 2016, p. 180-192



that this is the same property as the one in the natural number pattern 
is already to assume that the corresponding numbers are the same – 
which is the point in question. As a result, it’s not clear how one could 
decide issues such as these1.

Given the significance that Resnik assigns to patterns as vehicle of 
mathematical information, it would be a rather unexpected result if, in 
the development of an epistemological account of mathematics, patterns 
fail to play any epistemological role. But this is ultimately the thrust of 
MacBride’s dilemma (2004, p. 315-316).

According to MacBride, either templates and patterns can be 
structurally related to each other, or they cannot. (A) If they can be 
structurally related, then templates and patterns do have an information-
bearing connection (and so, the former can be invoked in developing an 
epistemology for the latter). However, (B) it then also follows that the 
positions under consideration are not incomplete (as opposed to what 
Resnik claims). After all, (C) “it is a precondition of positions enjoying the 
structural relations in question that they belong to the very same universe 
of discourse as the ordinary concrete objects from which templates are 
made” (MacBride, 2004, p. 316).

Alternatively, (D) if templates and patterns cannot be structurally 
related, then it’s unclear how there could be an information-bearing 
connection between them. After all, (E) Resnik doesn’t reveal which 
connection is that, and it’s inexplicable how “objects that do not even 
belong to the same universe of discourse could bear such a[n information-
bearing] connection to one another” (MacBride, 2004, p. 316). In either 
case, there’s trouble.

MacBride’s concludes that Resnik, despite his protestations to the 
contrary, ended up demanding some sort of interaction between the 
mathematicians and the objects of mathematical investigation. This, in 
turn, led

Resnik to seek a worldly embodiment of the patterns – the templates 
– that we can literally confront. But the patterns cannot be embodied 
(on pain of being complete), and Resnik is left with an impossible 
combination of views (MacBride 2004, p. 316).

Is there a way out?

1	N ote that there are two senses of incompleteness of a position in a pattern: (i) There is an 
ontological sense, according to which there is no fact of the matter as to whether that position 
has certain properties or not. But (ii) there is also an epistemic sense, according to which 
we do not have complete information to decide whether a given position has or not certain 
properties. Clearly, (i) entails (ii), but not vice-versa; (i) is thus more fundamental.
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3	 Solving the ‘access’ problem

I think there is a way of overcoming the difficulty. Properly characterized 
in terms of the framework presented below, mathematical structuralism 
has the resources to resist MacBride’s dilemma. First, note that statement 
(B) – the claim that positions in a pattern aren’t incomplete – doesn’t 
follow from premise (A) – the claim that if patterns and templates are 
structurally related, then there is some information-bearing connection 
between them. To see why this is the case, recall that there are several 
forms of structural relations between patterns (or between templates and 
patterns): they include not only isomorphism and homomorphism, but 
also partial isomorphism and partial homomorphism. And there are formal 
characterizations of the latter partial structural relations in which it’s 
simply not the case that the objects related by the appropriate mappings 
have to be complete (see Bueno, French and Ladyman, 2002; and 
da Costa and French, 2003; see also French, 2014).

Consider, for example, a partial structure 〈D, Ri〉i∈I, where D is a non-
empty set and Ri, i∈I, is a family of partial relations. A partial relation Ri, 
i∈I, over D is a relation which is not necessarily defined for all n-tuples 
of elements of D. The partiality of these relations can be interpreted in 
two ways: (i) It can be interpreted ontologically, as representing the 
incompleteness or partialness of the relations linking the elements of 
D. Or (ii) the partiality can be interpreted epistemically, as representing 
the incompleteness or partialness of our information about the actual 
relations linking the elements of D. (The formalism suggested here is 
neutral on this issue, and as will become clear, it can be interpreted in 
either way.) More formally, each partial relation R can be viewed as an 
ordered triple 〈R1, R2, R3〉, where R1, R2, and R3 are mutually disjoint sets, 
with R1 ∪ R2 ∪ R3 = Dn, and such that: R1 is the set of n-tuples that (we 
know) belong to R; R2 is the set of n-tuples that (we know) do not belong 
to R; and R3 is the set of n-tuples for which it is not defined whether they 
belong or not to R. (Note that when R3 is empty, R is a normal n-place 
relation that can be identified with R1.)

A notion of quasi-truth for partial structures can also be defined – 
this notion will be important for the discussion below. Given a partial 
structure A, there are several total structures B that extend the partial 
relations in A to total relations (relations that are defined for all n-tuples 
of elements of D). These are called A-normal structures. We then say that 
a sentence a is quasi-true in a partial structure A if there is an A-normal 
structure B in which a is true (in the Tarskian sense).

In terms of partial structures, it’s possible to define various 
forms of partial morphisms (such as partial isomorphism and partial 
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homomorphism) that extend very naturally the usual notions of 
isomorphism and homomorphism to partial contexts. Let S = 〈D, Ri〉i∈I 
and S′ = 〈D′, R′i〉i∈I be partial structures, where Ri and R′i are (for simplicity) 
binary partial relations. We say that a partial function f: D → D′ is a partial 
isomorphism between S and S′ if (i) f is bijective, and (ii) for every x and 
y ∈ D, R1xy ↔ R′1f(x)f(y) and R2xy ↔ R′2f(x)f(y). So, when R3 and R′3 are 
empty (that is, when we are considering total structures), we have the 
standard notion of isomorphism. Moreover, we say that a partial function 
f: D → D′ is a partial homomorphism from S to S′ if for every x and every y in 
D, R1xy → R′1f(x)f(y) and R2xy → R′2f(x)f(y). Again, if R3 and R′3 are empty, 
we obtain the standard notion of homomorphism as a particular case.

To illustrate how this framework is used, suppose, for a moment, 
that I’m engaged in the business of weather simulation, and that I use 
a template to describe the weather. The template’s components are 
descriptions of particular states of the weather in a given location at 
a certain moment in time. Note that the template I use is a concrete 
object: both the template itself (a string of symbols in my computer) and 
the objects it describes (the temperature, pressure, and humidity of the 
location under study) are concrete2. More importantly, note also that my 
template is not complete (it can be easily represented by a given partial 
structure). It doesn’t include all the information about the weather, even 
in the location I’m studying. The template includes some information 
regarding the weather – the one selected for depiction (represented in 
terms of R1- and R2-components). But not all aspects of the weather are 
considered: say, factors leading to lightning may be ignored. And even 
those aspects that are considered are not complete: water temperatures 
in the central-equatorial Pacific Ocean might not be available (they are 
elements in the R3-components).

After entering the data regarding a particular configuration of the 
weather, I run my simulation. At this point, I embed my template into 
an abstract pattern that includes various equations that describe the 
weather evolution. So, there are structural relations between my template 
and the abstract pattern: I map, via a partial isomorphism, or a partial 
homomorphism, certain data in the template into the abstract pattern. 
After running the program, I get some results, and interpret them back 
into the world. The results describe one way in which the weather 
may evolve. Does it follow that the positions in question are complete? 
Clearly not. The positions weren’t complete in the template to begin with,  
 

2	 Of course, I use numbers (actually, numerals) to represent the particular state of the weather 
in a given moment. But the temperature, pressure, and humidity, although represented by 
numbers, are not themselves numbers. They are physical states in the world.
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and they aren’t complete when I get my results back. So, despite the 
information-bearing connection between the templates and the patterns, 
it doesn’t follow that the positions in questions were not incomplete.

Note that an isomorphism (or, mutatis mutandis, a partial isomorphism) 
is an information-bearing connection between patterns, or between 
templates and patterns, in the sense that any two isomorphic structures 
are elementarily equivalent – that is, the same sentences are true in both 
structures. A similar point also holds for partial isomorphism: any two 
partially isomorphic structures are quasi-elementarily equivalent – that is, 
the same sentences are quasi-true in both structures. This allows one to 
transfer information from one structure to the other. But an isomorphism, 
or a partial isomorphism, doesn’t require any sort of interaction between 
the objects related. It’s simply a mapping between patterns that preserves 
certain structure. Nothing more is added. This allows the structuralist 
to provide an information-bearing connection between templates and 
patterns without requiring interaction between the positions in question 
or demanding that the positions in question be complete.

Exactly the same process goes on in the case of a mathematical 
proof. By manipulating certain interpreted symbols via truth-preserving 
inference rules, a mathematician shows that if the principles that are 
assumed in the proof are true, so is the result that follows from them 
– namely, the theorem that is established using the principles and the 
inference rules in question. This is done without having to establish any 
access to the mathematical objects referred to in the theorem. After all, 
the mathematician doesn’t have to establish the truth of the principles 
from which the theorem follows. To prove the theorem, all that is needed 
is to establish a (consequence) relation between the statement of the 
theorem and the principles in question via the inference rules.

As an additional example, consider the notion of set and of Urelemente 
(objects that are not sets), and the different ways in which set-theoretic 
notions can be extended. Even though there are structural relations 
between different set-theoretic patterns that include Urelemente – and 
hence there are information-bearing connections between them – this 
doesn’t guarantee that the sets in question (as positions in a pattern) are 
complete. And they aren’t, since they can always be extended further. 
This doesn’t require that even the Urelemente are complete. For all we 
know, they may even be quantum particles that lack well-defined identity 
conditions. (Of course, such particles are still concrete objects, spread 
out in space and time.)3

3	N ote that it’s not only positions in patterns that are not complete, in the sense that several 
of its properties can only be determined once a given pattern is specified. Concrete objects
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Now, in support of (B) – the claim that positions in a pattern aren’t 
incomplete – MacBride invokes (C), that emphasizes that for positions 
in patterns to share structural relations with concrete objects in 
templates, these positions have to be at the same universe as the 
objects that constitute the templates. However, the fact that positions 
in patterns and the corresponding objects in a template share the 
same universe of discourse doesn’t entail that such objects, or the 
positions in question, aren’t incomplete4. The examples of the weather 
template and of set theory with Urelemente clearly illustrate that: we 
have templates and patterns (or, in the case of set theory, different 
patterns) that share the same universe of discourse, but whose 
corresponding objects are incomplete. So, the inference from (C) to 
(B) also fails. And, as a result, it’s clear which horn of the dilemma the 
structuralist blocks.

Given the description above of how structuralists can approach 
the access problem, can we say that Resnik has presupposed that 
mathematicians need to interact with the objects of mathematical 
investigation (MacBride [2004], p. 316)? I don’t think so. Mathematicians 
clearly interact with templates. But these are concrete objects, and 
there’s no claim that templates, in turn, provide any means of interaction 
with mathematical objects. Not only talk of these objects drops out 
in the structuralist picture (the emphasis goes to patterns instead), 
but more importantly, it’s possible to establish structural relations 
between templates and patterns without assuming any interaction with 
positions in a pattern, and so no access to these positions is presupposed. 
As noted, partial isomorphism and partial homomorphism provide just 
those structural relations.

4	 Objections and responses

In support of the proposal just sketched, I’ll consider a few objections 
and indicate my responses. This will offer an opportunity to highlight 
additional traits of the suggested view5.

	 may also share the same feature, for familiar Quinean reasons: to determine whether a rabbit 
is present, and distinguish it from temporal stages of a rabbit, or undetached rabbit parts, 
one needs a background theory.

4	I t doesn’t entail that there is any interaction between these objects either. The universe of 
discourse only provides a collection of objects selected to be talked about. The collection 
may be as gerrymandered, disjoint, or disunified as it gets, with no interaction whatsoever 
among the objects.

5	 My thanks go to anonymous reviewers and for commentators on earlier versions of this work 
for raising these points.
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4.1  The unavailability of morphisms

It may be objected that there aren’t isomorphisms or partial 
isomorphisms between templates, which are, as we saw, concrete 
objects, and patterns, which are abstract structures. After all, since 
the former are not structures themselves the notion of isomorphism, as 
defined above, cannot be applied to them.

In response, it’s important to note that we have a description of the 
template that highlights the relevant relations among the entities that 
characterize that template. And the description defines a structure, 
with a given domain of objects (those selected for representation) and a 
family of relations (holding between the objects in question). And to such 
a notion of structure, one can readily apply the notions of isomorphism 
and partial isomorphism. 

It may also be objected that it’s unclear that there can be an 
isomorphism (or even a partial isomorphism) between a finite template 
and an infinite pattern, and thus the former are inadequate to capture 
the content of the latter.

In response, there can’t indeed be such isomorphisms between 
structures of different cardinalities. That’s why the notion of partial 
homomorphism was invoked in this context. With this notion in place, 
there’s no difficulty to establish a suitable morphism between structures 
whose cardinality differs.

4.2  Templates and existence
One may worry about how to guarantee that by introducing a 

template – say, by characterizing certain comprehension principles – 
the structures that are thus introduced correspond to independently 
existing abstract patterns; that is, patterns that exist independently of 
any description provided by a template.

In response, I don’t think we can have that guarantee, and that’s 
why we shouldn’t be Platonist about patterns. In fact, Resnik’s overall 
epistemological strategy as well as his central structuralist insight 
(regarding the inherent incompleteness of mathematical objects) 
can all be preserved without a Platonist ontology. In other words, we 
can claim that mathematics is the study of patterns, and that the 
positions that constitute such patterns need not have identity 
conditions defined outside the context of such patterns (in this sense, 
such positions are incomplete). When mathematicians introduce 
comprehension principles, they define a context that provides meaning 
to the terms that are used in the relevant principles. Within this 
context, it’s analytically true that there are objects and structures 
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of the appropriate kind (introduced by the relevant comprehension 
principles).

However, this is not sufficient to guarantee the existence of objects 
and structures independently of the context in which such terms are 
introduced. We describe the practice as a matter of formulating such 
principles and exploring the connections between them. In exploring 
such connections, (partial) isomorphism and (partial) homomorphism 
are, of course, central. And so, we can have radically incomplete objects 
(radically incomplete positions in a pattern) without having a commitment 
to the existence of objects that are independent of the comprehension 
principles themselves. As a result, we can have structuralism without 
Platonism. It seems to me that that position is perfectly coherent, and 
can be motivated from mathematical practice in interesting ways (see 
Bueno, 2009).

Given these considerations, we need not be committed to the 
existence of patterns (independently of the framework determined 
by suitable comprehension principles). We never leave the context of 
templates that are determined, in the case of pure mathematics, by 
appropriate comprehension principles.

4.3  Objects, ‘places’ in a structure, and incompleteness
Given the lack of commitment to ‘places’ in a structure (the structuralist 

reconceptualization of objects), what sort of entities are such ‘places’? 
And how can they be incomplete?

In response, on a structuralist view, the so-called ‘places’ in a 
structure just play a particular role, namely, the one that has been 
traditionally assigned to objects. But it’s crucial that such ‘places’ never 
be reified. The whole point of a structuralist approach to mathematics 
is to indicate that ‘places’ are entirely dispensable and there’s no need 
to settle any metaphysical question about their nature in order to make 
sense of mathematical practice. In particular, the question regarding 
what kinds of entities ‘places’ in a structure are becomes otiose, since 
no commitment to such ‘places’ is forthcoming in the resulting view.

As noted above, ‘places’ are incomplete given that not all of their 
properties are determined by the specification of the features that 
a template assigns to them. For instance, it’s not determined by the 
characterization of the third position in the natural number structure that 
that position is the same as the third position in the fragment of the real 
number structure corresponding to the positive integers. The relevant 
structures simply fail to settle this issue. Usually, it is simply stipulated 
that these ‘places’ are the same. But that’s simply a convenient choice, 
and no ontological conclusion can be derived from it.
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4.4  Templates, temperature, and concreteness

It may be argued that templates are not concrete. Despite the fact 
that their domain may contain only concrete objects, the relations that, 
in a template, manage to represent structures are abstract; in fact, such 
relations are often highly idealized entities. How can they be concrete?

In response, it’s important to note that several relations are clearly 
concrete. As I type these words at 30,000 feet above the ground, the 
relation my body bears to the ground (namely, being above of) is clearly 
concrete: it depends only on the relative spatial position between two 
concrete objects: my body and the ground. Even the relation being 30,000 
feet above of is concrete, despite the use of the mathematical vocabulary 
to express it. I may need to invoke some mathematics to express and 
represent the exact distance between my body and the ground, but it 
is still a concrete fact that I bear to the ground, being positioned with 
respect to it in a particular cluster of relative locations.

A similar point can be made for templates used in mathematics. They 
are concrete objects (drawings, physical models, blueprints) that are 
used to represent relations among abstract structures (patterns). The 
relations among the items in a template are similarly concrete (think of 
the notation invoked in the drawing of a commutative diagram). Despite 
being concrete, these relations can still be, and typically are, used to 
represent corresponding relations in a pattern (an abstract structure) 
via the elementary equivalence (or partial elementary equivalence in 
the case of partial morphisms) of isomorphic (or partially isomorphic) 
structures.

I noted above that temperature and other such magnitudes are 
concrete. It may be objected that they cannot be. There are at least a 
couple of reasons for this claim. (a) Thought of as states of a physical 
system, all such magnitudes are abstract. On this conception, abstract 
objects are taken to be ontologically dependent entities, which in this 
instance depend on concrete things. (b) The concept of temperature is 
clearly idealized. It cannot be specified independently of idealizations 
that emerge from the limitations of what we can perceptually experience 
and what we cannot experience directly. We are sensitive to variations 
in the sensation of warmth and thermal equilibrium, but we cannot 
experience these differences directly in a precise scale. To transform 
these differences in differences of temperature that can be represented 
by real numbers, we need (i) to idealize our capacity of experiencing 
variations in the sensation of warmth, and (ii) assume that these 
variations are continuous. Temperature can then be thought of in terms 
of the class of all objects of the same temperature (that is, all objects 
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that are in thermal equilibrium). At this point, suppose that a given 
body is in a determinate thermal state. One can then assign a number 
to that state, and more generally, assign numbers to thermal states of all 
kinds of objects (their “temperature”). These numbers thus represent a 
family of objects with regard to their thermal relation to another family 
of objects. As a result, it’s unclear how temperature can be a concrete 
entity, since it cannot be formulated without indispensable reference 
to abstract objects.

In response, it’s important to distinguish the concept of temperature 
from the physical process that this concept tries to measure. Understood 
as a physical process in the world, temperature is concrete: it is the result 
of all physical processes involved in the heat of physical bodies (or lack 
thereof). In contrast, the mathematical representation of temperature 
in terms of real numbers (or any other mathematical structure) clearly 
requires idealizations and the introduction of abstract patterns. But 
this is a feature of the mathematical representation (the representation 
cannot be implemented without a proper mathematical scale) rather than 
of the process being represented. But since the physical process that 
one aims to represent is a spatiotemporal phenomenon, it is concrete, 
not abstract.

Moreover, note that the idealization described in the objection above 
yields two structures: one that represents measurable differences in 
warmth of physical objects, and another that provides the scale that 
will be used to measure such differences (in this case, real numbers). A 
mapping between these two structures is then established. Interestingly, 
the former structure is clearly partial (since several relations among the 
relevant physical objects are not specified), and the relevant mapping 
between the two structures is a partial one (a partial homomorphism, in 
this case). So even the idealized representation of temperature can be 
properly captured via partial mappings in the end.

5	 Conclusion

For the reasons discussed above, I think structuralism can solve the 
‘access’ problem, without requiring any access to mathematical objects. 
This indicates a significant feature of mathematical structuralism: it’s 
a philosophical position in which the objects mathematical theories 
describe – to the extent that these objects are so described – do not 
play a role in how we get to know these objects (see also Azzouni, 
1994). As a result, structuralism provides a fundamentally different 
picture of mathematical epistemology than traditional epistemology 
would suggest.
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