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ABSTRACT: Exams and other assessments in health science education are 
not random events; rather, they are part of a bigger assessment program that is 
constructively aligned with the intended learning outcomes at different stages 
of a health science curriculum. Depending on topical and temporal distance, 
assessments in the program are correlated with each other to a more or les-
ser extent. Although correlation does not equate causation, once we come to 
understand the correlational structure of an assessment program, we can use 
that information to make predictions of future performance, to consider early 
intervention for students who are otherwise likely to drop out, and to inform 
revisions in either assessment or teaching. This article demonstrates how the 
correlational structure of an assessment program can be represented in terms 
of a network, in which the assessments constitute our nodes and the degree 
of connectedness between any two nodes can be represented as a thicker or 
thinner line connecting these two nodes, depending on whether the correlation 
between the two assessments at hand is stronger or weaker. Implications for 
educational practice and further research are discussed.
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RESUMO: Exames e outras avaliações na educação em ciências da saúde 
não são eventos aleatórios. Ao contrário, eles fazem parte de um programa de 
avaliação mais amplo, alinhado construtivamente com os resultados de apren-
dizagem pretendidos em diferentes estágios de um currículo de ciências da 
saúde. Dependendo da distância local e temporal, as avaliações no programa 
são correlacionadas entre si em maior ou menor grau. Embora a correlação não 
equivalha à causalidade, uma vez que entendemos a estrutura correlacional de 
um programa de avaliação, podemos usar essas informações para fazer previsões 
de desempenho futuro, considerar intervenções precoces para estudantes com 
probabilidade de desistência e informar revisões em avaliação ou ensino. Este 
artigo demonstra como a estrutura correlacional de um programa de avaliação 
pode ser representada em termos de uma rede, na qual as avaliações constituem 
nossos nós e o grau de conexão entre dois nós pode ser representado como 
uma linha mais grossa ou mais fina que conecta esses dois nós, dependendo 
se a correlação entre as duas avaliações em questão é mais forte ou mais fraca. 
Implicações para a prática educacional e mais pesquisas são discutidas.

PALAVRAS-CHAVE: Avaliação; programas; conexão; rede; análise de rede.

Introduction

Curriculum developers and teachers do not have it easy. Their daily jobs 

are about juggling between a multitude of tasks, some of which pertain 

to teaching and assessment in one or several educational programs as 

well as the evaluation and development of these programs. Although 

programs do evolve over time, there ought to be a constructive alignment 
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between the intended learning outcomes at 

different stages of a curriculum, what is taught 

and in what ways, and what is assessed with 

which methods. Two assessments that, through 

topical vicinity, have a substantial overlap in 

the intended learning outcomes they intend to 

capture, will likely yield somewhat correlated 

results and more so if the amount of time between 

these assessments is relatively small (e.g., within 

the same academic year, or at the end of two 

consecutive academic years). That is, relatively 

better performance on one assessment tends to 

go together with relatively better performance 

on the other assessment, while relatively poor 

performance on one assessment tends to go 

together relatively poor performance on the 

other assessment. Absence of such a correlation 

may reflect a lack of reliability in at least one 

of the assessments, a lack of actual overlap in 

intended learning outcomes, at least one of the 

assessments suffering from limited validity due 

to an unintended skill influencing the results, or 

some combination thereof. Statistical analysis 

can shed light on the reliability factor and may to 

some degree inform a content review that will be 

needed to investigate the other factors.

In the light of the previously mentioned 

constructive alignment, assessments organized 

in the course of a curriculum can be conceived as 

nodes in a network that represents the assessment 

program for the curriculum at hand: the degree 

of connectedness of any pair of assessments 

can be represented as a line linking the two 

nodes representing these assessments, and the 

thickness of that line is a function of both topical 

and temporal vicinity [1]. That is, the more topical 

and/or temporal vicinity of two assessments, the 

stronger the correlation and therefore the thicker 

the line between these two assessments. While 

we should not mistake correlation for causation, 

correlations between assessments can help us 

to visualize and understand the correlational 

structure of an assessment program. This 

correlational structure can be used for several 

purposes, including (1) to make predictions of 

students’ future performance, (2) to consider 

early intervention for students who are otherwise 

likely to drop out, and (3) to inform revisions in 

either assessment or teaching. Therefore, this 

article demonstrates how an emerging statistical 

method called network analysis [1-5] can help us 

in this endeavor of visualizing, understanding, and 

using the correlational structure of an assessment 

program through a simulated worked example 

that incorporates types of assessments and their 

correlations commonly encountered in educational 

practice. Next, this article presents a few guidelines 

for educational practice and future research. 

Different models

A common approach to modeling correlations 

between assessments has been to treat different 

assessments as manifest indicators (i.e., observed 

variables) of so-called latent variables or variables 

that are not directly observed. In this approach, 

knowledge available on the part of a student is not 

observed directly but is assumed to be indicated by 

students’ performance on one or more knowledge 

assessments that have been designed to measure 

that knowledge. The same holds for skills, attitudes 

and other traits or states of interest. For example, 

through their program, medical students learn 

several skills that are important in clinical examination, 

including history taking, physical examination, 

problem solving and patient relationship, and 

students’ performances on clinical assessments are 

treated as manifest indicators of these latent skills. 

If three assessments measure the same type 

of knowledge or skill (e.g., grammar knowledge, 

or probability calculus skill), core assumption in 

the latent variable approach is that these three 

assessments commonly respond to differences in 

the latent variable of interest. In practical terms, 

this means that students with higher degrees of 

that latent variable (i.e., more knowledge, or more 

skill) tend to score higher on these assessments 

than students with lower degrees of that latent 

variable (i.e., less knowledge, or less skill). This 

tendency induces a pattern of positive correlations 

between these assessments, with higher scores 

on one assessment tending to go hand in hand 

with higher scores on the other two assessments. 
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However, do we really need latent variables 

to explain this kind of patterns? If a group of 

animals – birds, cows, tigers, or other – decide 

to move as a group in a specific direction, that 

is because they communicate rather than there 

being some unobserved latent bird, cow, tiger 

or other animal to which the group of animals 

commonly respond. Likewise, if we have three 

assessments with the same types of questions, 

students’ performances are likely going to be 

similar on these three assessments regardless 

of any kind of latent variables because of how 

the questions are formulated. Besides, even 

if assessments can be conceived as manifest 

indicators of latent variables like knowledge 

and skill, they may be indicators of several latent 

variables (e.g., different types of knowledge or 

skill being measured by the assessment) and to 

varying degrees from one occasion to the next. 

Conceiving series of assessments in terms of 

networks is like a group of animals moving in the 

same direction; we do not need latent variables 

to understand correlations between assessments 

and how these correlations vary across years in 

an assessment program. Moving away from latent 

variables also comes with the advantage of lower 

demands on sample size; while a cohort of 50 to 

100 students may be large enough to estimate 

correlations which we then visualize in a network 

plot, such a sample size is rarely if ever enough 

for meaningful latent variable modeling. 

Correlations visualized in a network

In a hypothetical Health Science Program X, 

which is a four-year undergraduate program, 

students face a total of thirteen assessments that 

can be categorized in four areas: Health, Research, 

Communication, and Thesis. For each of Health 

and Research, students complete a written exam 

towards the end of each of the four academic 

years. For Communication, students deliver a 

thirty-minutes presentation followed by fifteen 

minutes of questions on a predetermined topic 

towards the end of each of the four academic 

years. Finally, the thesis project runs throughout 

the fourth academic year and results in a written 

thesis at the end of the fourth year. All thirteen 

assessments result in a score ranging from 0% 

(minimum) to 100% (maximum). For the most recent 

cohort of N = 280 graduates, Table 1 presents the 

correlations between these assessments (i.e., H1-

H4, R1-R4, and C1-C4 represent the exams in Years 

1-4 for Health, Research, and Communication, 

respectively, and TH stands for Thesis).

TABLE 1 – Pearson’s correlations between assessments in Health Science Program X

H1 H2 H3 H4 R1 R2 R3 R4 C1 C2 C3 C4 

H2 0.391 ---                      

H3 0.287 0.395 ---                    

H4 0.115 0.217 0.277 ---                  

R1 0.403 0.315 0.288 0.094 ---                

R2 0.272 0.340 0.301 0.161 0.427 ---              

R3 0.180 0.313 0.413 0.285 0.295 0.444 ---            

R4 0.042 0.255 0.257 0.303 0.148 0.315 0.440 ---          

C1 0.357 0.293 0.191 -0.013 0.512 0.343 0.187 0.147 ---        

C2 0.261 0.283 0.221 0.093 0.424 0.461 0.240 0.253 0.441 ---      

C3 0.180 0.281 0.247 0.089 0.327 0.372 0.365 0.283 0.273 0.454 ---    

C4 0.074 0.216 0.246 0.251 0.178 0.320 0.314 0.422 0.131 0.288 0.317 --- 

TH 0.072 0.168 0.233 0.368 0.091 0.286 0.322 0.538 0.082 0.221 0.238 0.513
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Figure 1 visualizes the correlations presented 

in Table 1 in a network format (software used: 

JASP, version 0.11.1.0 [6], a zero-cost Open Source 

statistical software program that has very good 

facilitates for network analysis).

Figure 1 – Correlations network of the assessments 
in Health Science Program X: 78 non-zero edges 
(i.e., sparsity = 0)

 

In Figure 1, we only see blue lines because 

all correlations except for one (i.e., C1 with H4) 

are positive; negative correlations would be 

represented as red lines, and the only one out 

of 78 correlations that is negative is so close to 

zero that the line is ‘lost’ in the forest of blue 

lines. If you wonder how we got to the number 

of 78 correlations: given k variables, the number 

of correlations KC that can be estimated equals:

KC = [k * (k – 1)] / 2.

For 13 variables, this means: KC = [13 * 12] / 2 = 78. 

We see that the correlations are strongest (Table 

1) and therefore the lines are thickest (Figure 1) 

between adjacent exams from the same theme 

(e.g., H1-H2, C2-C3, R3-R4) as well as between 

exams from different themes taking place in the 

same academic year. Exams from the same theme 

have a high topical vicinity, whereas exams in the 

same academic year have a high temporal vicinity. 

In other words, the connectedness of any two 

assessments is a function of topical and temporal 

vicinity, which explains why correlations between 

exams in Year 1 and exams in Year 4 are substantially 

smaller (i.e., commonly in the [0; 0.2] range) than 

the correlations with higher topical or temporal 

vicinity (i.e., more commonly in the [0.3; 0.5] range). 

Studying correlations between assessments 

that are expected to have a clear topical vicinity 

and that are administered in the same academic 

year can help to understand if that expectation of 

high topical vicinity is indeed realistic; correlations 

in the [0.3; 0.5] range or above add empirical 

support to that expectation. However, finding 

smaller correlations between assessments may 

point at either reliability issues for at least one 

of the assessments or the assessments under 

comparison at least partly measuring different 

traits or states. Reliability issues can be studied 

by assessing reliability statistics of each of the 

assessments; if these statistics indicate good 

reliability for each of the assessments, reliability 

issues are no longer a plausible explanation for 

the poor correlation between assessments. A 

similar reasoning goes for assessments that are 

supposed to measure the same knowledge or skill 

repeatedly, in the example here H1-H4, C1-C4, and 

R1-R4. Although a lot can happen in an academic 

year and therefore H2-H3 or C2-C3 correlations 

need not be higher than 0.5, finding correlations 

well below 0.3 would be surprising and again 

indicate either reliability issues with at least one of 

the assessments (to be checked through reliability 

statistics for each of the assessments) or the two 

assessments measuring quite different things. 

A more parsimonious network

The correlations presented in Table 1 and 

visualized in Figure 1 come with a challenge: since 

a correlation is in practice rarely exactly 0 (i.e., in 

which case there would be no line between the 

two assessments at hand), it can become difficult 

to recognize meaningful patterns in a network – 

especially in the case of more assessments and 

hence larger networks – and it easily results in 

vague statements like everything is connected 

with everything, statements that are of little use 
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to educational practice or research. Therefore, 

while Table 1 and Figure 1 constitute an important 

starting point to help us understand to what varying 

degrees different assessments are interrelated, 

in order to recognize important patterns more 

easily, we need a more parsimonious approach 

as a next, second step. Figure 2 (software used: 

JASP, version 0.11.1.0) [6] presents such a more 

parsimonious approach.

Figure 2 – More parsimonious network of the asses-
sments in Health Science Program X: 52 non-zero 
edges (i.e., sparsity = 1/3)

 

Very succinctly put, the method used to create 

the network in Figure 2 works as follows. The 

correlations presented in Table 1 are so-called 

bivariate correlations, that is: they are correlations 

between a given pair of assessments regardless 

of how strongly these two assessments correlate 

with other assessments in the network. Apart from 

bivariate correlations, we can also compute partial 

correlations: correlations between assessments’ 

residuals resulting from having accounted for other 

assessments in the network. In a network with three 

assessments – A, B, and C – the partial correlation 

between assessments A and B is the correlation 

between the residuals obtained from a regression of 

A on C and the residuals obtained from a regression 

of B on C. Where more than three assessments are 

concerned, the partial correlation between A and B 

is the correlation between the residuals resulting 

from a regression of A on all other assessments 

except B and the residuals resulting from a 

regression of B on all other assessments except 

A. Although partial correlations can be weaker 

as well as stronger than bivariate correlations, in 

networks of positively correlated assessments 

partial correlations are usually weaker. When we 

then apply a technique called Least Absolute 

Shrinkage and Selection Operator (LASSO) [7-9], 

(partial) correlations that are close enough to zero 

shrink to exactly zero and therefore do not need 

to be estimated, resulting in no line connecting 

the two assessments under consideration. The 

degree to which this shrinkage takes place can be 

selected by using an information criterion known 

as the Extended Bayesian Information Criterion 

(EBIC) [10]. This combination of EBIC and LASSO 

has been called EBICglasso (e.g., the ‘g’ stands for 

‘graphical’) [4-5] and is the method used to create 

the network in Figure 2. 

In Figure 1, which uses the correlations 

from Table 1, all lines or ‘edges’ are non-zero, 

and therefore there are 78 correlations to be 

estimated. All correlations that can be estimated 

are estimated, and that results in a network sparsity 

of zero. In Figure 2, a total of 26 of the 78 (partial) 

correlations have shrunk to zero, and therefore the 

sparsity of the network is 26/78 or 1/3; only 52 of 

the 78 correlations (i.e., two-thirds) are estimated.

Different questions

The networks in Figure 1 and Figure 2 respond 

to different questions. On the one hand, when 

the question is to what degrees different pairs of 

assessments are correlated, we need the bivariate 

correlations that are visualized in Figure 1. On 

the other hand, when the question is which are 

the most important connections in a network of 

many assessments, Figure 2 is more useful. For 

example, if we are interested in predicting TH 

(i.e., the final assessment that is delivered in this 

program) performance by other assessments, 

Figure 1 might make one think we need all twelve 

other assessments in the equation, whereas from 

Figure 2 we learn that we probably need not 
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look much if any further than C4, R4, and H4 (i.e., 

the three theme assessments in Year 4). From 

Table 1, we learn that a multiple linear regression 

model with C4, R4, and H4 as predictors explains 

about 41.8% of the variance in TH and that no 

statistically or practically significant gain in that 

proportion of variance explained is achieved by 

adding any of the other predictors. Likewise, if we 

are interested in the question to what extent the 

Year 1 theme assessments can predict R2 (i.e., the 

Year 2 Research assessment), Figure 2 indicates 

that in a regression model with C1, H1, and R1 

the latter contributes most to the prediction of 

R2, which makes sense given the topical vicinity. 

From Table 1, we learn that a regression model 

with R1 explains about 18.2% of the variance in R2 

(i.e., the square of 0.427 in Table 1), a regression 

model with R1 and C1 explains about 20.4% of 

the variance in R2, and adding H1 to the latter 

regression model only increases the proportion 

of variance explained to 21.0%, an increase which 

is neither practically nor statistically significant. 

Examples of other questions for which 
network analysis can be useful

Although network analysis is in this article 

presented as a useful method in the context of 

assessment and the evaluation of an assessment 

program which has longitudinal themes running 

through the curriculum, network analysis can 

be used in assessment programs in which 

such longitudinal structures are absent as well. 

More broadly, network analysis is a method 

that has many promising applications. One line 

of applications is found in the context of the 

previously mentioned latent variable modeling. 

Currently, factor analytic and other latent variable 

methods are used to examine the psychometric 

structure of measurement instruments and, in 

some cases, how latent variables supposedly 

measured by different instruments may be related. 

Network analysis provides a complement of, or 

to some extent perhaps an alternative to, latent 

variable methods. While in latent variable models, 

observed variables such as questionnaire items 

or (in the context of this article) assessments are 

assumed to be causally influenced by unobserved 

latent variables, in network models items or 

assessments that measure (more or less) the 

same variables of interest simply cluster together 

in cliques in a network. Latent variable models 

are a bit like seeing people being positioned 

and moving in the same direction in response to 

unobserved latent people (Gods?) moving them. 

In network models, topical and temporal vicinity 

provide directly observed (manifest) variables 

to explain why some items or assessments (or 

in the metaphor: people) are more connected 

than others; no latent variables are needed. The 

thirteen assessments in the example network 

are exam scores, but network analysis can also 

be applied to for example scores of exam sub-

scores. For example, in a clinical exam where 

medical students are assessed on history taking, 

physical examination, problem solving, and patient 

relationship in a series of stations each of which 

is one student-patient (or student-simulated 

patient) interaction, network analysis can help to 

see how the sub-scores on these different skills 

are intercorrelated, within and across stations 

(e.g., see Chapters 9-10 in [1]). 

Another context in which network analysis 

is very useful is found in studies with repeated 

measurements or larger time series with the same 

participants; network analysis can then help to 

acquire an understanding of the residual variance-

covariance structure of the set of measurements 

(e.g., Chapter 11 in Leppink [1]). Traditional, fairly simple 

statistical models often assume that the correlation 

is (more or less) constant across measurements; if 

this assumption is correct, the resulting network 

visualizing correlations (Figure 1) should be one 

of lines that are of more or less equal thickness 

(and of the same color). However, in practice, the 

correlation between two measurements tends to 

decrease with increasing temporal distance and 

that tends to result in patterns like the ones we see 

for the three longitudinal themes in Figure 1 (e.g., 

among R measurements, R1 is correlated most with 

R2 and least with R4). 

Finally, in a cross-sectional context, network 

analysis can help to make sense of a minefield of 
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large numbers of variables that are intercorrelated 

to a more or lesser extent. Without a network 

perspective, we might find ourselves in an exercise 

of very large numbers of regression models for the 

prediction of different variables of interest. Doing 

so would come at the serious risk of overlooking 

potentially important variables as well as of including 

variables in our models that do not add much to the 

prediction. As demonstrated in the example with 

Figure 2, adopting a network approach can help us 

to identify which are the most important predictors 

for any to-be-predicted variable of interest.

Guidelines for educational practice and 
research

As any potentially powerful statistical method, 

network analysis does have a cost: a substantial 

sample size, especially when using partial 

correlations (Figure 2). On a positive note, cohorts 

of around N = 250 can be enough for a good 

performance of the network approach in networks 

of up to 25 assessments or variables of interest 

otherwise [1, 11] and somewhat smaller cohorts 

may do for smaller networks which include clearly 

stronger and clearly weaker connections. For 

bivariate correlation networks (Figure 1), sample 

size is less of an issue; student cohort sizes of 50 

to 100 may be fine. However, when the interest lies 

in the more parsimonious type of networks (Figure 

2) and the cohort size becomes substantially 

smaller than 250 (e.g., N = 150), networks with no 

correlations being estimated (i.e., 100% sparsity) 

or an otherwise too high sparsity become more 

likely, and we may want to consider using the 

network approach for a more limited number 

of variables. If for example we are in a program 

where cohort sizes are 50 to 100 students, we may 

include only 5 to 10 (e.g., only R1-R4 and TH, or only 

the in total seven Year 3 and Year 4 assessments) 

assessments in our networks instead of 15 or 25 

assessments. Likewise, using sub-scores instead 

of (as in the example) overall exam scores will 

require larger numbers of observations as more 

variables will be involved (i.e., one overall score is 

a combination of several sub-scores); as always, 

models involving more variables tend to put 

higher demands on sample size than models 

involving fewer variables. In smaller cohorts, this 

comes down to focusing on smaller numbers of 

assessments (e.g., two assessments with three 

or four sub-scores each instead). 

Sample size limitations notwithstanding, 

network analysis can provide a useful supporting 

tool for visualizing the connectedness of 

assessments in a program. Interesting lines of 

research can be found in the study of the stability 

or dynamicity of networks within a program across 

cohorts, in the presence or absence of revisions 

being made to the program, and in differences 

between networks from different programs that 

have some features in common (e.g., longitudinal 

theme lines, or topical vicinity such as via medical 

or health science programs in a country or region). 

Further, while the example in this article – for the 

sake of simplicity – focuses on an assessment 

program, variables from student surveys about 

different teaching blocks or modules linked to 

specific assessments and about their motivational 

or emotional states and/or how much time they 

spent on different activities in a block or module 

can be included in the network as well to gain 

an understanding of the extent to which student-

related and program-related factors can help 

to predict students’ assessment performance 

throughout a curriculum, where we may want to 

consider early intervention or remediation, and 

where we may want to make revisions to our 

teaching and/or assessment. 

To conclude

Network analysis is an emerging statistical 

approach with promising applications in a variety of 

contexts, including in the evaluation and revision of 

assessment (and teaching) programs in educational 

curricula. While it does not replace content review 

or other statistical methods and approaches, it 

can greatly facilitate our work as educational 

practitioners and researchers. Network analysis 

is available in zero-cost Open Source software 

such as JASP, and documentation for its use can be 

found in the list of references provided in this article. 
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