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Abstract: There is one way with which Nature 

responds to the questions we direct her about the 

correctness of our understanding of her ways: by 

means of experiments. In this paper, the pivotal 

role probability theory plays in experimental 

physics is presented: it allows us to combine 

observations that are seemingly analytically 

incompatible. The main concepts used for such 

task are introduced and explained. A brief 

historical sketch of the development of some of 

such concepts is drawn and it was used as a case-

study to defend the position that physics and 

philosophy are interlinked affairs. Some 

philosophical consequences of how the 

intrinsically probabilistic character of 

experimentation reverberates in our epistemic 

access of the world are also drawn. 
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Resumo: É por meio de experimentos que a 

Natureza responde às questões que a ela 

direcionamos sobre a adequação de nosso 

entendimento sobre seu funcionamento. O papel 

central que a teoria de probabilidades 

desempenha em física experimental é, neste 

artigo, apresentada: esta nos permite combinar 

observações que parecem, em uma primeira 

leitura, incompatíveis. Os conceitos principais 

utilizados para fazê-lo são introduzidos e 

explicados. Uma breve discussão histórica do 

desenvolvimento de alguns dos mencionados 

conceitos é indicada e utilizada como estudo de 

caso para dar suporte à posição que defende que 

física e filosofia são atividades entrelaçadas. 

Algumas consequências filosóficas acerca das 

implicações do caráter intrinsecamente 

probabilístico da experimentação para o nosso 

acesso epistêmico do mundo são, também, 

apresentadas. 
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1. Introduction 

 

“What is probability?” is a question, one could argue, no one can answer. This statement is 

supported by the vast literature produced by philosophers and scientists while struggling (A) to come 

up with a non-circular definition and (B) to interpret the meaning of “probability” (Sklar, 1979). The 

existence to this day of such debates is, by itself, astonishing if we consider that probability theory had 

its bases built (at least) more than three hundred years ago and, since then, has been an indisputably 

successful tool for assessing the world. Such success makes of probability an object of interest for a 

wide range of academics of different areas. Philosophers, for instance, often write about its interpretation 

and definition (Earman, 1992). On the other hand, scientists use probability on a daily basis to interpret 

experiments, to solve problems and even to forge core concepts of theories (Von Weizsäcker, 1973; 

Sachkov, 1928). Looking at this scenario, it is clear that, from the debate, an opportunity arises: the 

discussion about the meaning and definition of probability is a battlefield where philosophers and 

scientists fight side by side. Consequently, the history of probability is an experiment where 

epistemologists can find high quality data; it is a rich source of information about the intersection 

between philosophy and science. From this perspective, this article aims to present (a) a summary of 

how scientists use probability for measuring physical quantities, including constant parameters of 

functions, and (b) a brief description of the history of the development of part of such mathematical 

tools. Once (a) and (b) are completed, we shall advance towards (c) identifying which features of the 

presented facts are of interest for academics working in the intersection between science and philosophy, 

and which questions these features may help answering. 

 

2. Measurement and uncertainty 

 

Our first task is to present the status quo regarding how scientists measure physical quantities 

and what role probability plays in measurements. The content of this topic is no more than a summary 

of what physics undergraduate students usually learn in their first couple of experimental physics 

courses. Same facts can be found in any introductory textbook of data analysis (see, for instance, Vuolo, 

1996; Taylor, 1997). 

To begin, suppose that, in the context of an experiment, a physical quantity, call it w, must be 

measured. We can imagine, for simplicity, that w is the size of an object. To do so, it is necessary to 

choose a measuring instrument: a measuring-tape, a rule, a caliper rule or a micrometer, for instance. 

After choosing the instrument, the measurer measures the object and gets a result w1. However, as 

strange as this may seem for those not used to experimentation, if another measurement is performed on 

the same object, a different result w2 will be obtained. Repeating the procedure N times will yield a set 
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(w1, w2, …, wn) of measurements.1 We can represent this set in the form of a histogram, i.e., a column 

graph representing how many results were obtained between the real numbers2 (x1, x1+Δx), (x1+Δx, 

x1+2Δx) and so on. Note that this distribution enables a quick calculation of relative frequencies. The 

relative frequency of a measurement being within a certain interval is the height of the column relative 

to this interval over the sum of the heights of all columns. 

We can abstract the situation to a continuous case with infinitesimally small intervals and 

represent the histogram by a curve. In this case, the relative frequency of an interval will be yield by the 

area under the curve delimited by such interval over the total area under the curve, i.e., the relative 

frequency equals the relative area. If we take relative frequencies to represent probabilities, then the area 

under the curve delimited by an interval is the probability of a measurement being within that interval. 

For this reason, this kind of curve is called probability density function (PDF). Now, we can finally 

understand that the final result of our experiment is not a numerical value from the set of real numbers, 

as one would expect. It is, rather, a distribution we commonly represent by a PDF. 

There is, nonetheless, a way of representing (at least partially) the PDF with a couple of real 

numbers. If the curve is symmetric, for instance, it is intuitively noticeable that we can represent the 

distribution by its central value (mean) plus a number representing the distribution’s “width”. In fact, 

this is exactly what scientists do. Usually, experimental results are presented in the form: �̅� ±  𝜎. �̅� is 

the arithmetic mean of w over the N measurements. σ, called “standard deviation”, is nothing more than 

an indicative of how far the data fluctuate around the mean. One way of grasping the meaning of σ is 

the following: it is expected that, if another measurement is performed, it will give a result whose 

difference from the mean is not much larger than σ. 

So far, we have given a description of what we have called “experimental result” and we have 

explained how it ought to be expressed in mathematical terms. If, however, we want to use such a result 

to, say, falsify3 a theory or model, then an interpretation of its meaning must be presented—meaning 

that can be expressed as the following: the existence of a true value4 w0 for the quantity w is assumed; 

the direct measurement of w0 is, however, impossible due to (i) the fallibility of the measurer, (ii) the 

fallibility of the measuring instrument and (iii) environmental interference with the measured object. 

The “width” of the distribution is determined by these three factors combined. The only course of action 

the experimenter can take in this scenario is to extract from the distribution the best possible estimative 

of w0 and, more importantly, to assess how good this estimate is. The way this is done is by putting the 

so called central-limit theorem (CLT) to use. 

                                                           
1 It is preferred the set to have statistically independent elements. This means, ideally, repetitions must be 

performed by different measurers using distinct instruments (“distinct” meaning not the very same tool). 
2 “Real numbers” here is used in the mathematical sense. 
3 “Falsify” is here meant in the Popperian sense (to compare an experimental result with the value predicted by a 

theory in order to accept or reject it. See Popper (2002 [1934])). 
4 “True value” is the term used by statisticians to refer to a real number that represents the physical quantity in its 

true form; a number one would obtain by performing an error free, ideal measurement. 
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The CLT is represented in figure 1. It states that, if the experiment is reproduced infinite times, 

each time yielding a mean �̅�𝑖 and a standard deviation σ, the distribution of the means �̅�𝑖 has a gaussian 

(or normal) form with mean identical to the true value w0 and standard deviation identical to 𝜎 √𝑁⁄ . 

The standard deviation of this gaussian distribution is called uncertainty. The CLT implies that the 

probability of a new experimental result �̅�𝑖, obtained by measuring N times the size w, to be within a 

certain interval from the true value w0 can be calculated. That is because CLT yields the PDF, the 

gaussian curve, that describes the distribution of means. This allows the exact calculation of areas under 

the curve – of probabilities, that is. 

 

Figure 1:illustration of the central limit theorem. The distributions of the measurements do not need to 

be gaussian for the distribution of the means to be gaussian. 

We close this section by making the following remark: falsification of theories and comparison 

between experimental results can only be expressed in terms of probability. An experiment attempting 

to falsify a theory can only yield conclusions such as “there is high (or low) probability such and such 

that theory is compatible with experimental results” and nothing of greater epistemological import. 

Probabilistic considerations, note, condition our very epistemic relation with experience. 

 

3. Least squares method 

 

The least squares method (LSM) is a method for measuring parameters of functions, or, 

equivalently, for measuring functions. Its importance can be summed up as follows: when one has data 

in one’s hands, one can depict it in a graph that makes explicit important physical traits of such data—

the velocity of an object in function of its position, say. Graphical analysis allows one to grasp important 

knowledge about the data depicted. There are, however, many ways functions can be drawn. More 

precisely, when one knows her data can be described by a certain kind of function, let’s say a parabola, 

for instance, the question of which mathematical parameters best relate the measured physical quantities 

poses itself. This is, in a nutshell, what the LSM does for us: it helps us determine which set of 
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parameters of a chosen mathematical function best describes the behavior of the data—or, in simple 

words, how to best draw a graph.  

In a first glance, LSM may appear to have nothing (or little) to do with the quantification of 

uncertainty of one single physical quantity, but there are at least three strong connections between them: 

(I) a single physical quantity can be thought of as the particular case of a function f(x) = constant; (II) 

parameters of functions must also have uncertainty associated to them; (III) historically, LSM and the 

uncertainty concept are closely related. Without further delay, let us see how the method works. 

In the previous section we have seen that the usual measurement procedure of a physical 

quantity leads to a set of data which is interpreted as being not identical to but distributed around the 

true value of this quantity. Now, let us use this lingo in a situation where a function is to be measured, 

i.e., the data is a set of pairs (xi, yi). x is here taken to denote the independent variable; y, the dependent 

one. Reproducing the previously presented argument, the parameters which determine the function are 

also taken to have true values. Consequently, for each true value the variable x can take, y will also have 

a true value. Given the fact that all we can do is measure fluctuations around true values, however, 

follows that each measured pair (xi, yi) is a frame of the fluctuation around the function. In this scenario, 

our job is to make the best possible estimate of the “true function” (true values of the function's 

parameters). 

The first thing to do is to establish which function we are trying to measure, which function best 

describes the behavior of the data. Let’s take the simple case of the equation of a straight line: 

 𝑓(𝑥) = 𝑎𝑥 + 𝑏. (1) 

 

To make it concrete, think of a body in uniform linear motion. In this case, x denotes time; f(x) 

denotes the position (as a function of time, of course). These are the quantities that one will measure in 

this case: at the end of the day one will have a data set of measured pairs (x, f(x)). a and b, by their turn, 

denote velocity and initial position respectively (not directly measured). These are the parameters one 

would seek to indirectly quantify. Assuming the existence of true values for parameters a and b we 

conclude that, for each measurement xi of x, there is a f(xi) representing the true value of the quantity y 

– let’s call it μi. However, our measurement yi is just a frame of the unavoidable fluctuation around μi. 

We call “error” and denote by E the difference between the measurement yi and the true value μi. 

 𝐸𝑖 = 𝑦𝑖 − 𝜇𝑖. (2) 

 

From a practical point a view, the error definition is not very useful, because we never know the 

true value μi. The closest we can get to quantifying the error is quantifying the difference between the 

measurement yi and the estimated value of 𝜇𝑖. This difference is called residual. 

 𝑅𝑖 = 𝑦𝑖 − 𝑓(𝑥𝑖) (3) 
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We can also define, so to speak, a kind of total residual for the whole set of measurements. One 

convenient way of doing so is taking the sum over i of Ri² over the uncertainty of yi: 

 𝜒2 = ∑ (
𝑦𝑖 − 𝑓(𝑥𝑖)

𝜎𝑖
)

2𝑁

𝑖=1

 (4) 

 

But why should we do so? Well, (4) allows us to define a criterion for estimating a and b: the 

best estimate for a and b is that which minimizes the value of χ². The way we defined χ² implies it must 

have an expected value which allows assessment of the quality of the estimates. The denominator in 

expression (4) works a statistical weight for each term of the sum: the more precise the measurement, 

the greater the weight it has on the sum. 

Our final task is to find the expressions for a and b which minimize χ². Once χ² is defined, 

finding the needed expressions is just a simple calculus exercise. The value of a for which χ² is minimum 

is that which satisfies the equation: 

 
𝜕𝜒2

𝜕𝑎
= 0 (5) 

The same is true for b: 

 
𝜕𝜒2

𝜕𝑏
= 0 (6) 

 

Finally, we have the expressions for the estimative of a and b and they only depend on the 

measured (xi, yi) values. 
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 (6) 
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The reader must have in mind the fact that the quality of the least square estimate must itself be 

assessed. A detailed presentation of how such an analysis works in practice would take us too far astray, 

however, and will not be done here. Suffices to note that an assessment of LSM is done by checking if 

the obtained value of χ² is probabilistically compatible with its PDF. Empowered by such tools, note, 

we know not only to assess how well the experiment was performed and how experimental results reflect 

on theory, but we can also guarantee such analysis is solid. 
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The problems displayed in sections two and three are, in fact, the same: combining observations 

(elements of a data set) which are apparently analytically incompatible.5 The short introduction above 

given may hide the nontrivial character of such problem. Its complexity is made explicit by the 

acknowledgment of the long history behind its solution, a history that is briefly sketched in the next 

section. Focus will be given to the development of LSM. With such a sketch we hope to pave the way 

and give ground to the philosophical and epistemological considerations drawn in section 5. 

 

4. A brief history of the conception of uncertainty 

 

The problems of determining the value of a physical quantity from a set of measurements of this 

quantity and of determining parameters of functions from a set of measurements date both from at least 

300 years BCE. For instance, between 500 and 300 years BCE, Babylonians developed mathematical 

tools, which required the estimation of parameters, for calculating the motion of some celestial bodies 

as a function of time. Unfortunately, no material remained for indicating how such estimates were 

done—it is only clear that they had to do estimations somehow in order to use their tools. Another 

example is reported by Manitius (1913): Hipparchus’ endeavor, around 300 BCE, to determine whether 

or not the passage of the Sun through the same solstitial point is truly periodic. Hipparchus concluded 

the Sun does not pass the same point periodically by comparing his measurement with an error estimate 

of his creation. He determined the maximum variation in the duration of a year is ¾ of a day whilst his 

measurements’ error could not be higher than ¼ of a day. He did not establish a way of calculating a 

representative value from a set of measurements, nor constructed a universal method for quantifying 

error. Neither mathematics nor concepts were ripe enough for doing so. His procedure did contain, 

however, at least implicitly, the idea of “fluctuations of measurements” due to errors. 

A very interesting historic case in which the necessity of comparing experimental values has 

proved to be pressing is the so-called “trial of the Pyx”, which was extensively studied by Stigler (1977). 

The trial of the Pyx is an event which occurs from time to time in Great Britain since, at least, 1248. Its 

purpose is to evaluate the quality of the coins produced by the Royal Mint. Even though details of the 

trial have changed through time, its general aspects can be summarized as follows: everyday, one coin 

out of a pre-established number of coins is taken from the Mint’s production and stored in a box called 

“Pyx”. After two or three years of repeated storage, the trial happens; the Pyx is opened and an 

assessment of the stored coins is performed in order to check if the coins meet predetermined standards 

regarding its weight and fineness. If they do not, the master of the Mint could face severe punishment. 

The trial, in a nutshell, is a straightforward case of estimating a population out of a sample; and we know 

it cannot be done without considering statistical fluctuations. What is particularly interesting here is the 

                                                           
5 In section two, we have multiple measurements of the same object, which are not numerically equal to one 

another. In section three, we have multiple measurements forming what should be a straight line, but they cannot 

satisfy simultaneously any straight-line equation. 
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fact that, in fact, they did account for statistical fluctuations, even though in a rudimentary manner: a 

remedy (tolerance) was allowed; the coins had to be within this remedy. Stigler (1977) concluded that 

the remedy was very permissive with the master of the Mint. The remedy was too large; a skilled master 

could enrich greatly by pocketing a small fraction of silver and gold while still attending to the remedy. 

Ironically, the most prominent master of the Mint was Sir Isaac Newton, a mind no one would object to 

call “skilled”. Newton served the position from 1699 to 1727. It is a historical fact that he became 

wealthy during his years in service of the Royal Mint, which raises the question whether or not he was 

taking advantage of the excessive tolerance. Actually, he faced charges regarding the fineness of the 

coins during the 1710 trial. However, de Villamil’s (1931) and Craig’s (1946) investigations lead us to 

believe Newton became wealthy as a result of his fair earnings and finance management. 

Newton’s “not guilty” verdict raises another question: why Newton did not defraud the Royal 

Mint? Was he following a moral compass or he simply did not realize the shortcoming in the trial’s 

assessment? The answer is unclear, but Newton’s last work – The Chronology of Ancient Kingdoms 

Amended, published post mortem, in 1728 – allows for speculations that he did know something about 

error theory. The mentioned work, a report to Princess Caroline, is an attempt to estimate the mean 

duration of reigns. Newton had at his disposal a table with mean reign durations of 12 kingdoms. This 

table had values ranging from 11.6 (Babylon) to 25.18 (Egypt) years. In the absence of statistical 

knowledge, we can speculate, one would state that the mean duration of a reign is something in the 

neighborhood of 18.4 ± 6.8 years, i.e., the average between extremes ± half the difference between 

extremes; or the arithmetic mean ± half the difference between extremes; or just a straightforward “from 

11.6 to 25.18”. However, Newton’s assertion was that kingdoms last “about eighteen to twenty years”. 

Here is the astonishing part: the calculation, using Newton’s table, of the arithmetic mean ± uncertainty, 

as presented in topic 1, leads to 19.1 ± 1.0 years! Saying that Newton had all error theory solved is 

certainly too much of an extrapolation. However, risking being accused of whiggish historicism 

notwithstanding, one can speculate that is very likely that Newton understood, at least intuitively, the 

inverse proportion between uncertainty and size of data set. 

Let us now present the historical facts more directly connected to the development of tools for 

combining observations. Before late XVI century it was common procedure that, when one wanted to 

compare a result with a set of results, one would arbitrarily choose values within such a set to draw 

conclusions. Plackett (1958) states that Tycho Brahe, in the decade of the 1580s, appears to be the first 

to combine measurements in order to obtain a single value of a physical quantity. Brahe measured the 

right ascension6 of the star α Arietis using different techniques and calculated the arithmetical mean 

between obtained values, in a clear attempt to remove systematic errors7 from his results. However, the 

                                                           
6 α Arietis is the brightest star in the northern zodiacal constellation of Aries. Right Ascension is, together with 

declination, a celestial coordinate for indicating a point on the celestial sphere. 
7 Systematic error is an error generated by an accuracy deficiency in an experiment. A clear example of systematic 

error is given by an uncalibrated instrument; which will cause an equal shift from the true value in all elements of 

a data set. However, unlike the uncalibrated instrument example, sometimes systematic errors cannot be avoided. 
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use of arithmetical mean as representative value of a data set became a considerable standard procedure 

only by the first half of the XVIII century (Plackett, 1958). By 1750, some astronomers had realized that 

combining observations making use of arithmetic mean could be advantageous somehow, but they 

would only combine measurements which were considered to have the same accuracy (Stigler, 1986: 

16), i.e., measurements performed exactly with same conditions (same measurer, time, space, instrument 

etc.). Possibly, Roger Cotes was the first one to express this idea objectively in a posthumously 

published work in 1722. 

Leonhard Euler’s study of Saturn and Jupiter shows clearly that, by mid-XVII century, 

combining observations was still not a well-established idea (Stigler, 1986: 25). In 1748, the Academy 

of Science in Paris announced a prize for the one who would provide the best explanation for inequalities 

observed in the orbit of Saturn and Jupiter. Over 50 years earlier Halley had observed that the former 

planet appeared to be retarding while the latter was accelerating; he also proposed the mutual attraction 

between the planets was the reason behind these inequalities. Euler, in his 1749’s work, engaged in 

solving this problem. Assuming Saturn and Jupiter orbit the Sun elliptically and that the ellipses are not 

in the exact same plane, Euler came up with a fifteen parameter equation; seven of which were directly 

observable variables and the other eight were constants that could only be extracted from fitting. Euler 

then faced an embarrassment of riches: he had seventy-five sets of observations, i.e., equations with 

experimental values, at his disposal, but only eight unknowns to find. He combined small sets of 

equations with similar coefficients, subtracting one from the other in an attempt to make those 

coefficients disappear. However, there were not enough observations with similar coefficients - leading 

him to a dead-end. Even though Euler managed to win the prize offered by the Academy of Science, he 

clearly failed to provide any meaningful way of combining observations. His failure catches the eye 

even more when contrasted to Tobias Mayer’s successful work published just one year after. 

As many great scientific endeavors of the eighteenth century, Mayer’s work was also about 

astronomy and was closely related to technology and matters of state of the time (Stigler, 1986: 16). In 

1714, seeking to improve the power of localizing ships on the sea, England established the 

“commissioners for the discovery of longitude at sea”, an institution that offered prizes for the ones who 

would help find a way of determining longitude at the sea. In 1747, Mayer engaged in solving the 

commissioners’ problem by studying the Moon - a task that led to a publication, in 1750, on the libration 

of the moon.8 During the two preceding years, Mayer performed measurements of the position of some 

lunar features, which allowed him to infer characteristics of the lunar orbit. His observations were 

described by a linear equation with 3 measurable variables and 3 unknown constants. Therefore, he only 

needed three observations to solve the problem mathematically. His measurements, however, were 

                                                           
8 The so called “dark side of the moon” is not, in fact, one-hundred percent dark. During a one-month period is 

possible to observe that the moon oscillates a little, showing us, during this time, almost sixty percent of its surface. 

This oscillatory movement is called “libration”. 
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twenty-seven in total. Again, as in Euler’s study of Saturn and Jupiter, an embarrassment of riches 

emerged; but Mayer’s reaction to the problem was fundamentally different from Euler’s. Mayer divided 

the twenty-seven observations in three groups of nine; then, he added the nine, turning the nine into one, 

and solved the three resulting linear equations. The fact that he understood the importance of not 

arbitrarily discarding experimental results together with his simplistic away of combining measurements 

is, by itself, impressive. His most remarkable achievement, however, was the way he grouped equations. 

Mayer choose the groups based on the values of one of the unknowns. The first group had the 

biggest values of this unknown; the second group had the smallest values; and the third group had the 

“intermediate values”. Curiously, Mayer mistakenly assigned the third group as having the biggest 

values of another constant. After finding the values of the unknowns, Mayer moved to analyzing the 

accuracy of his results. First, he defined error as “how far the quantity (...) can deviate from the true 

value”. He stated clearly that considered the errors (he used the German word “Fehler”) to be inversely 

proportional to the number of measurements. Then, he estimated the error and presented his final result 

in the form 𝑥 ± 𝑒𝑟𝑟𝑜𝑟. This allows us to conclude Mayer’s arrangement of equations was not a mere 

accident. In his procedure, he assumes the existence of errors and true values; instead of trying to swipe 

the errors under the carpet by choosing only the convenient observations, as Euler tried to do, he 

separated the observations so as to consider the full extent of fluctuations. He took the philosophical 

position where increase in information implied increase in precision and built his procedure on it. 

 

Figure 2: scheme of Mayer’s procedure of combining equations in his study on the libration of the moon. 

It did not take long for Mayer’s method to become fairly accepted. It was widely used during 

the second half of the eighteenth century, before LSM’s birth. Despite the success due to its easy 

applicability and easy handling, the method lacked a clear theoretical foundation. For instance, it stated 

nothing about the quality of the results, i.e., it did not answer the question “is the obtained result the 

closest to the true value one can get?”. Boscovich, in 1760, was the first to express the combination of 

observations problem in terms of general statistical principles. Just as Euler and Mayer, Boscovich was 

also working on astronomical observations. By that time, there was still doubt about the precise shape 
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of the earth9 and Boscovich was analyzing data related to this problem (Stigler, 1986: 39). What he 

proposed in his analysis is a primitive version of χ². He proposed that (I) the sum of all residuals ri (he 

used the word “correction”) must be zero and; (II) the sum of the absolute values of the residuals must 

be minimum.10 

 ∑ 𝑟𝑖 = 0

𝑁

𝑖=0

; (7) 

 

 ∑|𝑟𝑖|𝑖𝑠 𝑚𝑖𝑛𝑖𝑚𝑢𝑚

𝑁

𝑖=0

. (8) 

 

Boscovich did not realize he could differentiate his expressions as we did in section 3. Instead, 

he built a very interesting and overly complicated geometrical solution. For the lack of practicality, his 

solution would probably not reach very far regarding the impact on his peers. Even Boscovich himself 

did not go back to use his method again. But the sharp eyes of Laplace noted the potential of Boscovich’s 

idea. 

In 1789, Laplace, also while working on the shape of the Earth problem, having perceived the 

excessive complication in Boscovich’s geometrical solution, published an analytical version of 

Boscovich’s method. Ten years later, in 1799, Laplace moved further and added one important 

ingredient to Boscovich’s axioms. He gave statistical weight to each term in expression (7), 

understanding that the higher the precision of the measurement, the higher should be its weight (Stigler, 

1986: 50). Even though he did not quantify the weight in a manner we would approve today, the 

importance of the step he took forward is indisputable. 

LSM’s first appearance was in an appendix of Legendre’s memoir on the determination of 

cometary orbits (1805). It is clear that, at this point, after so many incremental advances, the stage was 

set for the birth of LSM. All the conceptual grounds had already been built. The only thing still missing 

was someone to realize that the minimization of the sum of the square of the errors was a better and 

easier to handle criterion than Boscovich’s sum of the absolute values; and that is exactly what Legendre 

did in his memoir. 

 

5. Physics and philosophy join hands 

 

Three general, but nonetheless important, lessons can be drawn from the preceding sections. 

Part of the physicist’s armory when dealing with data analysis was described in sections 2 and 3. The 

                                                           
9 By that time, it was a consensus that the Earth was not exactly sphere shaped, but a sphere with flattened fractions. 

The discussion was limited to where the flattened parts were: at the poles or at the equator. 
10 These criteria appear to be very similar to the χ² presented in section 3, but they present some flaws that do not 

remain in χ² (Nievergelt, 2000). 
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road traveled for some of such arsenal to be forged, whigguishly outlined in section 4. This historical 

sketch, its briefness notwithstanding, is indisputable evidence against the view of scientific discovery 

that takes important scientific results to be “found” by one particularly gifted person in a final frenzy of 

intellectual effort: from Hipparchus to Legendre there is a time lapse of millenia. Although the err of 

such a conception is obvious to most philosophers, well-acquainted as they are with history of science, 

this is not the case of scientists—it is, in fact, a position endorsed by most of them. Such tales about how 

theories are forged are found in many physics textbooks widely used in courses of basic physics—

notorious examples are (Nussenzveig, 1998: 182) and (Halliday et al., 2007: 1253-1254) at introducing 

Einstein’s formulation of special relativity. At reading their presentation one falls under the impression 

the relativity of simultaneity has reached Einstein’s thought as suddenly as a stroke—sweeping under 

the carpet all intellectual historical context that has proven to be sine qua non condition for such a 

scientific revolution to be in order. Physics students sleep over such books and it is fair to assume most 

of them believe in their content. How much such views of scientific discovery influences one’s own 

view of one’s work and ability to advance knowledge is a question we here leave open, but it is 

reasonable to assume it is nonnegligible. 

Philosopher of science Neurath (1921) has once compared science to a boat that floats in the 

open sea. The scientists and the philosopher, he wrote, are on the same boat. Examples were given in 

section 4 in which the solution advanced towards a problem relied upon a preconceived idea of how the 

solution would look like—preconceptions demonstrably philosophical in character. This is clear for 

instance when one contrasts Euler’s and Mayer’s attempts to combine observations: the former, his 

mathematical brilliance notwithstanding, could not face the matter with the appropriate philosophical 

stand—the stand that has led the latter to the right solution. In effect, this is one of the senses in which 

the authors want to be understood when advocating the interdependence of science and philosophy: just 

as the mathematician yields to the physicist a box in which she can find several tools she may put to use 

at will to the purposes she thinks better fit, in a similar vein philosophers are experts in uncovering 

details of problems and advancing metaphysical and epistemological tools to approach them that can be 

used profitably by scientists—on the condition they are aware such tools are at their disposal. Sometimes 

the situation is such tools needed had not even been crafted, however—as in the case above mentioned—

, and scientific and philosophical thinking must merge and be put to work at once for the appropriate 

tool to be forged. This is one way of stating the authors’ position that science and philosophy are, at the 

end of the day, sides of one same coin. What matters, when one seeks to find solution to problems such 

as those faced by Newton, Euler, and Mayer, is originality of approach—and that’s when the 

philosopher’s toolbox kicks in and she and the scientist may work jointly to advance clever solutions to 

relevant questions. 

In closing, we make the following remark about statistical methods in science and their 

implications: a theory’s final fate lies always at the hands of the experimentalist—Nature, experience, 

is always the ultimate judge. Sections 2 and 3 make clear that all epistemic contact we have with 
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experience is intrinsically probabilistic in character; the ways with which science uncovers the workings 

of Nature are limited by the constraints of probability theory. The philosophical resonance of this 

indisputable empirical fact is deep and far-reaching and will be pursued in other paper. 

 

 

References 

CRAIG, J. Newton at the Mint. Cambridge: Cambridge University Press, 1946. 

DE VILAMIL, R. Newton: The Man. London: Knox, 1931. 

EARMAN, J. Bayes or Bust? Cambridge, US: MIT Press, 1992. 

HALLIDAY, D.; RESNICK, R.; WALKER, J. Fundamentals of Physics. New Jersey, US: John Wiley & Sons, 

2007. 

HELENE, O.; TSAI, S.; TEIXEIRA, R. What is a Measurement? Revista Brasileira de Ensino em Física, vol. 13, 

p. 12-29, 1991. 

MANITIUS, K. Des Claudius Ptolemäus Handbuch der Astronomie. Leipzig: Teubner, 1913. 

NEURATH, O. Anti-Spengler. Vienna: Callwey, 1921. 

NIEVERGELT, Y. A Tutorial History of Least Squares with Applications to Astronomy and Geodesy. Journal of 

Computational and Applied Mathematics, v. 121, p. 37-72, 2000. 

NUSSENZVEIG, H. Curso de Física Básica – vol. 4. São Paulo, Brazil: Blucher, 1998. 

PLACKETT, R. Studies in the History of Probability and Statistics VII: The Principle of the Arithmetic Mean. 

Biometrika, vol. 45, n. 1/2, p. 130-135, 1958. 

PLACKETT, R. Studies in the History of Probability and Statistics XXIX: The Discovery of the Method of Least 

Squares. Biometrika, vol. 59, n. 2, p. 239-251, 1972. 

POPPER, K. The Logic of Scientific Discovery. Abingdon-on-Thames: Routledge, 2002. 

SACHKOV, Y. Probability in Classical and Quantum Mechanics. Studies in Logic and the Foundations of 

Mathematics, vol. 104, p. 441-447, 1982. 

SKLAR, L. Probability as a Theoretical Concept. Synthese, vol. 40, p. 409-414, 1979. 

STIGLER, S. The History of Statistics: The Measurement of Uncertainty before 1900. Cambridge, Massachusetts, 

Us: Harvard University Press, 1986. 

STIGLER, S. Gauss and the Invention of Least Squares. The Annals of Statistics, vol. 9, n. 3, p. 465-474, 1981. 

STIGLER, S. Eight Centuries of Sampling Inspection: The Trial of the Pyx. Journal of the American Statistical 

Association, vol. 72, n. 359, p. 493-500, 1977. 

TAYLOR, J. An Introduction to Error Analysis. California, US: University Science Books, 1997. 

VON WEIZSÄCKER, C. Probability and Quantum Mechanics. The British Journal for the Philosophy of Science, 

vol. 24, p. 321-337, 1973. 

VUOLO, J. Fundamentos da Teoria de Erros. São Paulo, Brazil: Blucher, 1996. 


