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Abstract
Aims: it was evaluated the antioxidant effect of the ethanolic extract of Caesal-
pinia ferrea bark in a model of oxidative stress induced by paracetamol (PCM). 

Methods: male Swiss mice were subdivided into four groups (control; PCM; 
PCM+extract; extract; n=8) in which a dose of paracetamol (250 mg.kg-1) was 
administered and after 3 hours the treatment with the extract (100 mg.kg-1/
day) was administered for seven days, via gavage. Oxidative stress biomarkers 
were determined, such as catalase, glutathione-S-transferase, reduced gluta-
thione, ascorbic acid, thiobarbituric acid reactive substances and carbonylated 
proteins of liver, kidneys and brain and plasma parameters through the dosage 
of glucose, cholesterol, triglycerides, aspartate aminotransferase and alanine 
aminotransferase. 

Results: the Caesalpinia ferrea extract was able to reverse the lipid and protein 
damage caused by the drug in the liver tissue and caused the same effect in the 
renal and brain tissues in the carbonylated proteins. The extract alone decreased 
liver glutathione-S-transferase and increased catalase and brain glutathione-S-
-transferase activity, in addition to lowering glucose and cholesterol, but without 
altering the triglycerides. 

Conclusions: it was possible to conclude that the ethanolic extract of the bark of 
Caesalpinia ferrea has a good antioxidant activity, probably due to the presence 
of tannins, in view of the damage caused by the high dose of paracetamol in the 
samples investigated. However, more studies are needed for a better understan-
ding of the effects of this extract compared to the effects found in this research.

Keywords: Caesalpinia ferrea, biochemistry, ethanolic extract, oxidative stress, 
paracetamol, acetaminophen.

Resumo
Objetivos: foi avaliado o efeito antioxidante do extrato etanólico da casca de 
Caesalpinia ferrea em modelo de estresse oxidativo induzido por paracetamol 
(acetaminofeno, PCM). 

Métodos: camundongos Swiss machos foram subdivididos em quatro grupos 
(controle; PCM; PCM+extrato; extrato; n=8) nos quais foi administrada uma dose 
de paracetamol (250 mg.kg-1) e após três horas foi administrado o tratamento 
com o extrato (100 mg.kg-1/ dia) por sete dias, via gavagem. Foram determinados 
biomarcadores de estresse oxidativo, como catalase, glutationa-S-transferase, 
glutationa reduzida, ácido ascórbico, substâncias reativas ao ácido tiobarbi-
túrico e proteínas carboniladas do fígado, rins e cérebro, além de parâmetros 
plasmáticos através da dosagem de glicose, colesterol, triglicerídeos, aspartato 
aminotransferase e alanina aminotransferase. 

Resultados: o extrato de Caesalpinia ferrea foi capaz de reverter os danos lipí-
dicos e proteicos causados pela droga no tecido hepático, e também causou o 
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mesmo efeito nos tecidos renal e cerebral nas proteínas 
carboniladas. O extrato sozinho diminuiu a atividade 
da glutationa-S-transferase hepática e aumentou a 
da catalase e glutationa-S-transferase cerebral, além 
de diminuir a glicose e o colesterol, mas sem alterar 
os triglicerídeos. 

Conclusões: foi possível concluir que o extrato eta-
nólico da casca de Caesalpinia ferrea apresenta uma 
boa atividade antioxidante, provavelmente devido à 
presença de taninos, tendo em vista os danos causados 
pela alta dose de paracetamol nas amostras investiga-
das. Entretanto, mais estudos são necessários para um 
melhor entendimento dos efeitos deste extrato frente 
aos efeitos encontrados nesta pesquisa.

Palavras-chave: Caesalpinia ferrea, bioquímica, 
extrato etanólico, estresse oxidativo, paracetamol, 
acetaminofeno.

Introduction

Brazil has had a long history of using medicinal 

plants to treat the health problems of the popula-

tion, its use is built on experience and transmitted 

orally (1), with knowledge about medicinal plants 

often representing the only therapeutic option for 

many communities (2). According to the World 

Health Organization, a medicinal plant is defined 

as “any plant that has, in one or more organs, subs-

tances that can be used for therapeutic purposes 

or that are precursors of semi-synthetic drugs” (3).

Caesalpinia ferrea Mart (C. ferrea) is a legume 

widely distributed in the North and Northeast 

regions of Brazil (4), popularly known as pau-ferro 

or jucá, belonging to the Leguminosae-Caesal-

pinoidae family (5). Its bark is widely used in folk 

medicine because it has antiinflammatory (6), 

analgesic (7), antimutagenic (8) and chemopre-

ventive properties towards cancer (9), besides 

hypoglycemic activity and demonstrated mo-

lecular mechanisms of C. ferrea bark extracts in 

streptozotocin-induced diabetes in Wistar rats 

(10). According to Araújo et al. (11), the presence 

of phenolic compounds, such as tannins and 

flavonoids present in the skin of C. ferrea, can 

positively interfere in the effects associated with 

wound healing and antiinflammatory activity. In 

the phytochemical analyses, several compounds 

in the genus Caesalpinia were isolated, the main 

ones being flavonoids, diterpenes and steroids 

(12). In studies carried out with the bark of the stem 

of C. ferrea revealed the presence of flavonoids 

(catechins and epicatechins), coumarins, sapo-

nins, steroids, hydrolyzable tannins (gallic acid and 

ellagic acid) and other phenolic compounds (10).

Oxidative stress is defined as a state of imba-

lance between oxidizing radicals, free radicals, 

and antioxidant systems as the body’s internal de-

fense mechanism (13, 14). The imbalance occurs 

because of the excessive level of reactive oxygen 

species (ROS) or the inadequate functioning of 

the antioxidant system (15). ROS are molecules 

with an unpaired electron, including peroxides, 

superoxide, hydroxyl radical and singlet oxygen, 

therefore being very reactive and toxic to cells, 

as they affect different cellular components in 

various ways (16).

Paracetamol (PCM; N-acetyl-p-aminophenol or 

acetaminophen) is a widely used antipyretic and 

analgesic medication, which can induce severe 

acute drug-induced liver damage when taken 

in overdose (17). PCM is oxidized by cytochrome 

P450, which leads to the formation of the toxic 

electrophilic metabolite, N-acetyl-p-benzoquino-

ne imine (NAPQI) (18). Therefore, the overdosing, 

such as 1 g.kg-1 of PCM, leads to the accumula-

tion of this metabolite, which is a highly reactive 

compound that acts as a precursor to the toxic 

side effects observed in the body (19). This fact is 

triggered because there is saturation of the glu-

curonidation and sulfation pathways, producing 

more NAPQI, which depletes reduced glutathione 

(GSH) reserves and GSH-dependent enzymes 

and forms protein adducts by binding to the 

cysteine groups in cellular proteins and forming 

N-acetyl-p-aminophenol-cysteine adducts (20). 

With the increase in this protein adducts formed 

by NAPQI, oxidative stress, mitochondrial damage 

and centrilobular necrosis occurs, and eventually 

leads to liver damage (21).

Considering the antiinflammatory properties 

already described by C. ferrea and studies done 

by Wyrepkowski et al (8) who identified antioxidant 

compounds such as ellagic acid and gallic acid 

found in the ethanolic extract of the stem bark 

of C. ferrea, in addition to that overdosage with 

PCM can deplete glutathione and release proin-

flammatory agents, for instance, inflammatory 
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cytokines (22), we hypothesized that the stem 

bark extract from C. ferrea can exhibit antioxidant 

activity against PCM-induced oxidative stress in 

mice. For this, the animals will be intoxicated with 

a high dose of PCM and treated for seven days 

with the ethanolic extract of the plant.

Methods

Extract preparation

The bark of the stem of C. ferrea was collected 

in the city of Juína / MT, Brazil (11 ° 22’40 “S and 

58 ° 44’27” W) and the botanical identification was 

performed at the Universidade Federal de Mato 

Grosso (UFMT), Sinop / MT campus, Brazil. An 

exsiccata No. 3021 was deposited at the Herba-

rium Centro Norte Mato-Grossense.

According to the methodology of Wyrepkowski 

et al. (8) for the preparation of the extract, the stem 

bark was dried and ground to powder (1610.0 

g) of C. ferrea. Hereafter it was mashed at room 

temperature with ethanol (4 × 48 h). The solution 

was evaporated under vacuum resulting in 260.09 

g (16.2%) of crude ethanolic extract (EXT) from 

the stem bark. From the EXT, chemical studies 

were also carried out to quantify total phenols 

and antioxidant potential with 2,2-Diphenyl-1-pi-

crylhydrazyl (DPPH).

Determination of Total Phenols Content

The concentration of total phenols from EXT 

was determined colorimetrically according to 

the standard procedure of Folin-Ciocauteau (23). 

For the same, 0.625 mg of EXT was used and 

dissolved in 10 mL of MeOH (62.5 μg.mL-1), 10 mL 

of Folin-Ciocauteau solution obtained by diluting 

0.667 mL of commercial Folin Ciocauteau with 

distilled water, 5 mL of saturated Na2CO3 solution 

(200 g.L-1); 2.5 mg of Gallic Acid (Merck®, Darms-

tadt, Germany), used as a standard, in 10 mL of 

MeOH (250 μg.mL-1). The calibration curve with 

gallic acid was performed at concentrations of 

7.81, 15.62, 31.25, 62.5, 125.0 and 250.0 μg. mL-1. 

Next, 150 μL of the Folin-Ciocauteau solution 

and 50 μL of sample in standard dilutions were 

added to a 96-well plate, after three minutes, 50 

μL of saturated Na2CO3 solution was added and 

2 h were left until the reaction was completed. 

After the reaction, reading was performed in a 

UV/Visible spectrophotometer at 750 nm. The 

entire procedure was performed in triplicate. 

The principle of the procedure for evaluating 

total phenols is the reaction between the Folin-

-Ciocalteau reagent and phenolic compounds, 

with subsequent oxidation of the phenols and 

formation of a blue complex (24). In the first reac-

tion step, deprotonation of phenolic compounds 

(for example, the standard gallic acid) occurs in 

a basic medium, generating phenolate anions. 

From there, an oxidation-reduction reaction oc-

curs between the phenolate anion and the Folin 

reagent, in which the molybdenum, component 

of the Folin reagent, is reduced and the reaction 

medium changes color from yellow to blue (25).

Assessment of Antiradical Potential

The EXT of C. ferrea stem bark was also analy-

zed for its ability to capture the free radical DPPH. 

The antiradical potential was evaluated by means 

of a spectrophotometric assay, according to the 

methodology described by Pauletti et al. (26) 

with modifications. A solution of 0.004% DPPH 

in methanol was used which was mixed with the 

EXT solution. Stock solutions were prepared from 

2.5 mg of the test sample (EXT and standards) in 

10 mL of methanol (250 mg.mL-1). Then, dilutions 

were performed up to concentrations of 6.25; 12.5; 

25.0; 50.0; 100.0 and 200.0 μg.mL-1. To each 20 µL 

of the sample, 200 µL of the DPPH solution was 

added. After 30 minutes of reaction, the absor-

bance of the solutions was measured at 517 nm. 

The reference solution was made with 20 µL of 

methanol plus 200 µL of the DPPH solution. Gallic 

acid (Merck®, Darmstadt, Germany) and quer-

cetin (Sigma-Aldrich®, St. Louis, USA) standards 

were used, which were submitted to the same 

experimental procedure as the EXT. The entire 

procedure was performed in triplicate. Antiradical 

activity was determined by the equation:

Antiradical activity (%) = ((Negative control ab-

sorbance - sample absorbance)/ Negative control 
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absorbance x 100)

The efficient concentration of EXT, that is, the 

amount of antioxidant needed to decrease the 

initial concentration of DPPH by 50% (EC50), was 

determined using the Microsoft Office Excel Pro-

gram, from an exponential curve, obtained by 

plotting on the abscissa the sample concentra-

tions (μg.mL-1) and in the ordinate, the percentage 

of remaining DPPH (% DPPHREM).

This test evaluates the ability of a substance 

to scavenge the stable free radical DPPH and 

is based on the reduction of the DPPH solution. 

DPPH is violet in color, has absorption at 517 nm 

and, when reduced, turns yellow. This reduction 

occurs when there are substances that can cede a 

radical species (radical hydrogen) to DPPH, giving 

rise to another stable radical, which is associated 

with the antiradical property (27).

Animals and In Vivo Treatment

This study was approved by the Comitê de 

Ética no Uso de Animais under protocol number 

23108.781869/12-0. Male Swiss mice with an 

average weight of 30 ± 5 g were obtained from 

the Vivarium of Universidade Federal de Mato 

Grosso, Campus Cuiabá. First, the animals were 

acclimated for 14 days with food and water ad 

libitum, room temperature (25 ± 1 °C), relative 

humidity (51 ± 2%) and with a 12-hour light / dark 

period.

After acclimatization the animals were divided 

into 4 groups (n = 8) according to the following 

groups: Control (filtered water + Tween 80), PCM 

(250 mg.kg-1 PCM in a single dose + Tween 80), 

PCM + EXT (250 mg.kg-1 of PCM in a single dose 

+ 100 mg.kg-1 of EXT) and EXT (filtered water + 100 

mg.kg-1 of EXT). Subsequently, oxidative stress 

was induced through PCM acute intoxication at a 

dose of 250 mg.kg-1, which was based on a study 

by Olaleye and Rocha (28). The administration 

of the treatment started after three hours of the 

administration of the PCM, in which it occurred 

with filtered water or with the EXT prepared in 

an aqueous solution containing 0.1% of Tween 

80 (vehicle) at the dosage of 100 mg.kg-1. This 

dose was established according to the Malone 

Hippocratic test (29). The animals were treated 

orally by gavage (0.3 mL/day/per animal) for a 

period of 7 days.

After 24 hours of the last dose and after 8 

hours of fasting, the animals were anesthetized 

(ketamine 50 mg.kg-1, xylazine 2 mg.kg-1 and 

acepromazine 2 mg.kg-1), blood was collected 

(with heparinized syringes) by cardiac puncture 

and centrifuged at 1000 g for 10 minutes to obtain 

plasma. Subsequently, the animals were eutha-

nized by cervical dislocation, the liver, kidneys 

and brain were removed and washed with saline 

solution (0.15 M NaCl) and then frozen at -85 °C.

Biochemical Analysis 

Enzymatic antioxidant activities were mea-

sured in liver, kidney and brain tissues. Catala-

se activity (CAT) was determined according to 

Nelson and Kiesow (30). The principle is based 

on the decomposition of H2O2 and measured 

spectrophotometrically at 240 nm and expressed 

in μmol H2O2 min-1 mg protein-1. The activity of 

glutathione-S-transferase (GST) was determined 

according to Habig et al. (31) and the enzymatic 

activity was measured according to the formation 

of the GS-DNB adduct. The result was expressed 

in µmol GS-DNB min-1 mg protein-1.

The non-enzymatic antioxidant GSH was me-

asured by the colorimetric method that consists 

of a reaction of the sulfhydryl groups developed 

by Sedlak and Lindsay (32) in the liver, kidneys 

and brain and quantified at 412 nm. The result 

was expressed in µmol GSH mg protein-1 and 

compared to a standard GSH curve. The levels 

of ascorbic acid (ASA) in the liver and brain were 

determined according to Roe (33), using the 

colorimetric method and read at 520 nm absor-

bance. The result was expressed in μmol ASA g 

tissue-1 and compared with a standard curve of 

ascorbic acid.

The oxidative damage to lipids in the liver was 

determined by spectrophotometric identifica-

tion of the levels of thiobarbituric acid reactive 

substances (TBARS) and presented as malon-

dialdehyde (MDA) levels, according to Buege and 

Aust (34). The amount of lipid peroxidation was 
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expressed in nmol MDA mg protein-1. Oxidative 

damage to proteins in the liver, kidneys and brain 

was measured by determining carbonyl groups 

according to Yan et al. (35). The amount of car-

bonylated proteins (carbonyl) was expressed in 

nmol of carbonyl mg protein-1.

The protein content of the sample (except 

ASA) was determined during the analysis by the 

method of Bradford (36) at 595 nm, using bovine 

serum albumin as a standard for the construction 

of the calibration curve.

The enzymatic activities of alanine amino-

transferase (ALT) and aspartate aminotransferase 

(AST), and the quantification of plasma glucose, 

total cholesterol and triglycerides in plasma were 

performed using commercial kits (Labtest®, Diag-

nostic S.A, Minas Gerais, Brazil).

Statistical Analysis

Results were presented as mean and standard 

deviation, analyzed according to one-way ANOVA 

and followed by Tukey’s post hoc test. The ho-

mogeneity of the variances was verified using the 

Bartlett’s test. The level of significance established 

for rejection of the null hypothesis was 5%.

Results

Total Phenols

The total phenol content was determined by 

interpolating the absorbance of the samples from 

the analytical curve constructed with the gallic 

acid standard (7.81 to 250 μg.mL-1) and expressed 

as mg of gallic acid equivalent per g of EXT. The 

analytical curve was constructed from the ab-

sorbance values at 750 nm and having methanol 

as “blank”. The equation of the analytical curve 

for gallic acid was C = 93.118A – 41.834, where C 

is the concentration of gallic acid and A is the 

absorbance at 750 nm and the correlation coef-

ficient R = 0.9956 (Figure 1). The result obtained 

from the total phenols content was 480.00 mg 

gallic acid equivalent for each g of EXT from the 

stem bark of C. ferrea. 

Figure 1. Analytical curve of total phenols at 750 nm. Standard - Gallic Acid.

http://g.mL
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Assessment of Antiradical Potential

The results of the anti-radical activity of the 

ethanolic extract of C. ferrea and of the gallic 

acid and quercetin standards, obtained with the 

antiradical assay by DPPH, are presented in the 

Figure 2. The amount of EXT necessary to decrea-

se the initial concentration of DPPH by 50% (EC50), 

revealed values of EC50 = 55.43±0.34 μg.mL-1 for 

the EXT and EC50 = 48.80±0.82 μg.mL-1 and EC50 

= 21.80±1.23 μg.mL-1 for quercetin and gallic acid 

standards, respectively. 

Figure 2. Percentage of DPPH inhibition by the ethanolic extract from C. ferrea and by the standards 
quercetin and gallic acid. DPPH, 1,1-diphenyl-2-picryl hydrazil.

Biochemical Analysis 

The results of Figure 3 are presented in se-

quence. CAT activity decreased in the PCM group 

and EXT didn’t recover this effect. We observed 

that all the treatments were able to reduce the 

hepatic GST activity. For the hepatic GSH levels, 

there was a decrease after the administration 

of the oxidative stress inducer (PCM) and the 

extract was not able to reverse this damage 

(PCM+EXT versus PCM), but for ASA levels, the 

same effect didn’t occur. On the other hand, the 

EXT reduced the increase of TBARS and protein 

carbonylation levels in the PCM group, although  

 

the EXT alone increased TBARS levels. In addition, 

such as observed in Table 1, the same pattern 

of result was obtained for kidney and brain once 

EXT reduced protein carbonylation increased by  

PCM. Besides, CAT and GST activities in the brain 

tissue increased in the EXT group, but this effect 

didn’t occur in renal tissue. For plasma analyses, 

EXT reduced the increase ALT activity in the PCM 

group returning to control values but not to AST 

activity, and diminished glucose and cholesterol 

levels per se without altering triglycerides. 

http://g.mL
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Figure 3. Effect of ethanolic extract from C. ferrea under oxidative stress induced by PCM on liver tis-
sue, graphs of: (A) CAT, (B) GST, (C) GSH, (D) ASA, (E) TBARS and (F) Carbonyl (n = 8). ASA, ascorbic acid; 
ALT, alanine aminotransferase; Carbonyl, carbonylated proteins; CAT, catalase; EXT, crude ethanolic 
extract; GSH, reduced glutathione; GST, glutathione-S-transferase; PCM, Paracetamol, TBARS, thio-
barbituric acid reactive substances. *p <0.05 compared to Control group; **p <0.05 compared to PCM 
group. 1-way ANOVA followed by Tukey test.

TABLE 1 – Effect of ethanolic extract from C. ferrea under PCM-induced oxidative stress on renal and 
brain tissue and plasmatic parameters.

Group CONTROL PCM PCM + EXT EXT

Renal Tissue

     CAT 13.4±2.1 14.2±2.7 14.2±1.6 15.1±1.3

     GST 1.3±0.19 1.0±0.23* 1.1±0.15 1.2±0.17

     Carbonyl 6.3±1.4 15.0±3.1* 7.7±1.9† 8.8±1.8

Brain Tissue

     CAT 0.74±0.16 0.79±0.18 0.68±0.15 1.29±0.19*

     GST 0.12±0.02 0.14±0.02 0.12±0.02 0.18±0.02*

     GSH 12.7±1.96 15.2±3.43 12.8±1.31 14.5±2.43

     ASA 0.41±0.04 0.45±0.03 0.39±0.03 0.40±0.02

     Carbonyl 4.5±0.8 7.2±1.8* 4.7±1.1† 5.5±1.3

Plasma

     Glucose 208.6±31 188.9±37 132.5±24* 91.3±19*

     Cholesterol 79.0±9 70.3±14 46.2±9* 61.1±14*

     Triglycerides 88.4±17 76.4±16 87.2±20 82.8±14

     ALT 27.1±6 47.0±10* 32.9±5† 32.6±7

     AST 85.3±21 169.0±39* 155.2±23* 362.6±28*

ASA, ascorbic acid; ALT, alanine aminotransferase; AST, aspartate aminotransferase; Carbonyl, car-
bonylated proteins; CAT, catalase; EXT, crude ethanolic extract; GST, glutathione-S-transferase; redu-
ced glutathione, GSH, reduced glutathione; PCM, Paracetamol. The results are expressed as mean ± 
SD; n = 8 animals. *p <0.0001 compared to Control group, †p <0.0001 compared to PCM group. 1-way 
ANOVA followed by Tukey test.



8/15 Scientia Medica Porto Alegre, v. 33, p. 1-15, jan.-dez. 2023 | e-﻿

Discussion

Plants produce a variety of antioxidant subs-

tances, among which phenolic compounds stand 

out. The extract evaluated in this study showed 

high levels of phenolic compounds when com-

pared to thyme (Thymus vulgaris L.), sage (Salvia 

officinalis L.), and marjoram (Origanum majorana 

L.) extracts (37). The antioxidant activity of phe-

nolic compounds is mainly due to their reducing 

properties and, thus, they play an important role 

in the neutralization or scavenging of free radicals 

and chelation of transition metals, acting both in 

the initiation stage and in the propagation of the 

oxidative process (38). Therefore, the anti-radical 

effect of EXT observed in this study is possibly 

due to the high content of total phenols since 

the anti-radical activity is normally correlated 

with the presence of phenols (38). In general, 

polyphenols and in particular tannins have a 

structure for the scavenging of radicals, indicating 

antioxidant capacity (39). Fruits and plant extract  

 

rich in ellagic acid, gallic acid and hydrolysable 

tannins are reported in the literature to exert 

strong antioxidant effects (40, 41). 

In this line, the use of medicinal plants for the 

treatment of diseases in humans has increased 

considerably worldwide (42). This is due to the dif-

ficulty in accessing health care by the population, 

who do not have their demands and needs met 

and therefore, are partially provided by the use 

of alternative therapies and also by a personal 

alternative (43). One of the major problems faced 

is that the use of phytotherapies and medicinal 

plants currently used by self-medication or by 

medical prescription has no known toxic (44). 

Thus, in this study, we decided to investigate the 

possible effect of the EXT as an antioxidant in the 

model of oxidative stress induced by paracetamol, 

whose hepatotoxicity in high doses generates 

ROS and inflammatory processes (28).

There is a great diversity of secondary meta-

bolites present in plants, making them a source 

of biomolecules for therapeutic purposes, such 

as phenolic compounds that contain antioxidant 

properties due to their chemical structure (45). 

The EXT used in this experiment was studied 

and the phytochemical parts were analyzed by 

Wyrepkowski et al. (8) who characterized and 

quantified the compounds, identifying twenty-six 

molecules, in which hydrolysable tannins derived 

from gallic acid and ellagic acid predominated. 

On the other hand, Souza et al. (45), studying 

the crude ethanolic extract and ethyl acetate 

extract from leaves of the same plant, observed 

different compounds, such as the flavonoids 

rutin, amentoflavone, quercetin-3-β-D-glycoside, 

taxifolin, apigenin, quercitrin and luteolin which 

were found in the crude ethanolic extract and all 

of these, except quercitrin were identified in the 

ethyl acetate extract, which demonstrates that 

different parts of the plant have different bioactive 

compounds and that can result in different effects.

Tannins are polyphenolic compounds extrac-

ted from plants and are composed of different 

chemical structures (46), in which hydrolysable 

tannins can be found that include gallotannins 

and ellagitannins (47). They consist of gallic acid 

esters and ellagic acid glycosides that are formed 

from chiquimic acid (48) or condensed tannins 

that are polymers of proanthocyanidins (46). They 

are secondary metabolites whose characteristic 

are the ability to complex with macro and micro 

molecules and can act in the sequestration of 

free radicals, allowing for a series of pharmaco-

logical applications (49). Gallic acid can elimina-

te free radicals, acting as an antioxidant and is 

responsible for some biological activities (50) as 

an antioxidant and anti-inflammatory agent (51), 

as well as a bactericidal and bacteriostatic agent 

(52), along with anticancer and antiangiogenic 

properties (53). Ellagic acid, on the other hand, 

has antioxidant properties and the ability to cap-

ture free radicals that result in the prevention or 

reduction of oxidative stress, a condition invol-

ved in several disorders, in addition to having a 

neuroprotective and anti-carcinogenic effect (54). 

On the same note, flavonoids contain antioxidant, 

anti-cancer, antimicrobial, antiviral and anti-aging 

properties, in which they can promote various 

biological effects in different types of cells (55). 

As an antioxidant, flavonoids can suppress the 
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formation of ROS by inhibiting enzymes that 

generate these compounds (such as microsomal 

monooxygenase and NADH oxidase), scavenging, 

chelating metals involved in the generation of 

these molecules, or by increasing the activities 

of antioxidant and detoxifying enzymes (such as 

glutathione peroxidase, glutathione reductase 

and CAT) (56). Catalase is involved in blocking the 

chain of free radicals produced by living beings 

together with superoxide dismutase and gluta-

thione peroxidase, in which they prevent oxidative 

modifications of DNA, proteins and lipids (57). Its 

action occurs in catalyzing the conversion of hy-

drogen peroxide (H2O2) into water and molecular 

oxygen (58). In our study, the EXT was not able 

to recover the inhibition of this enzyme that was 

caused by the medication.

PCM is a widely studied drug, as it has a hepa-

totoxic potential after an overdose in experimental 

animals and in humans (59). In this context, Blie-

den et al. (60) observed that the PCM hepatoto-

xicity remains the leading cause of acute liver 

failure in the USA and Europe, with over 300,000 

hospitalizations annually in the USA and up to 42 

% of all cases of acute liver failure attributable to 

acetaminophen overdose. The conventional dose 

of PCM is metabolized to non-toxic compounds 

that are excreted in the urine, while a small re-

maining part is metabolized by CYPs to a highly 

reactive intermediate metabolite, NAPQI (61). 

NAPQI binds to glutathione (GSH) and leads to 

the rapid depletion of hepatic GSH, consequently 

after GSH depletion; NAPQI binds to other cellular 

thiol proteins (especially mitochondrial proteins) 

and disrupts the mitochondrial respiratory chain, 

which causes the formation of mitochondrial 

ROS (62). In our studies, we observed a decrease 

in hepatic GSH levels after the administration 

of the oxidative stress inducer (PCM) and the 

EXT was not able to recover this non-enzymatic 

antioxidant. However, in pharmacological doses 

of PCM, NAPQI is rapidly conjugated with GSH 

spontaneously and by GST (63), which in this case, 

in high doses, is depleted and therefore is not 

conjugated. Consequently, there is a decrease 

in GST activity, as occurred in our study in which 

GST in the liver decreased in the PCM groups and 

the EXT was not able to restore this enzymatic 

antioxidant.

The depletion of GSH induced by NAPQI can 

aggravate oxidative stress and lipid peroxidation, 

which ends up leading to the acceleration of 

necrosis and apoptosis in the liver tissue (64). 

According to Hasanein and Sharifi (65), oxidative 

stress induced by a high dose of PCM significantly 

increased the concentration of MDA in the liver of 

Wistar rats. This is in line with our study, in which 

there was an increase in TBARS in the liver of the 

PCM group and the EXT was able to reverse the 

damage caused by the drug, decreasing liver lipid 

peroxidation, however, the EXT per se presented 

increased TBARS levels. Lipid peroxidation, under 

toxic conditions as in the case with this drug, can 

induce cells to necrosis or apoptosis because the 

extent of oxidative damage exceeds their repair 

capacity, and therefore, causes damage to the 

molecular components of cells, which can faci-

litate the development of various diseases and 

premature aging (66).

Protein carbonylation is irreversible and gene-

rally results in impairment or even loss of protein 

function (67). Its oxidative modification can be 

initiated by the reaction with hydroxyl radicals, but 

it is even more dependent on the concentration of 

the superoxide radical and hydrogen peroxide in 

the medium (68). In our studies, protein damage 

increased in the PCM group, and the plant extract 

was able to reverse this damage. This fact may 

have happened due to ellagic acid, which is con-

sidered a polyphenolic compound, with protective 

effects that can be attributed to some factors, 

which include binding to DNA, inhibition of ROS 

production and its elimination, protection of DNA 

against injuries from alkylating agents, thereby 

ellagic acid neutralizes free radicals and inhibits 

lipid peroxidation and protein carbonylation (69). 

For the levels of ASA, a good antioxidant, soluble 

in water and considered essential to the organism 

through its action as a redox agent in biological 

systems (70), it was found that this non-enzymatic 

antioxidant decreased in PCM group, and the 

EXT did not interfere in this parameter. The same 
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results occurred in the assay by Magalhães et al. 

(71), in which they used the same oxidative stress 

model, but used the ethanolic extract and the 

ethyl acetate fraction extract from the leaves of 

Trattinnickia rhoifolia.

Drug-induced liver damage, in this work using 

PCM as a model, can lead to increased concen-

trations of serum enzymes such as AST, ALT, 

alkaline phosphatase, in addition to increased 

serum bilirubin, glucose, triglycerides, urea and 

creatinine (72). The permeability of hepatocyte cell 

membranes is impaired after cell damage, which 

in this case was caused by PCM. Because of this, 

the liver enzymes AST and ALT are released into 

the circulation, which causes a significant increase 

in their levels (73, 74). In our study, there was an 

increase in the enzymes ALT and AST activities, 

however, for ALT, the extract was able to restore 

the values at the control levels. These increases 

in the enzyme’s activities (PCM group) are in line 

with the model used in the studies by Olaleye 

and Rocha (28). On the other hand, although 

the extract had a good effect on ALT, the same 

cannot be seen in the mitochondrial enzyme AST. 

According to Krithika and Verna (75), flavonoids 

can reduce ALT and AST activity in the serum of 

the animal exposed to the liver injury model. In our 

study, this EXT presents several compounds, and 

we didn’t know the extent of effect each one can 

cause. Interestingly, GST reduction and an incre-

ase in TBARS, which measures lipid peroxidation, 

were observed. So, new studies are required to 

purify and identify the active compounds in this 

extract. On the other hand, in our research, there 

was a decrease in glucose and cholesterol.

These data demonstrate that the extract had a 

beneficial action, as it decreased serum glucose 

and cholesterol, demonstrating that the extract 

has a hypoglycemic and hypocholesterolemic 

action. Studies have shown that different hydroly-

sable tannins contain biological properties such 

as antitumor, antimutagenic, antidiabetic and 

antibiotic (76), and in the EXT some compounds 

were found, consisting of hydrolysable tannins 

such as gallic acid and ellagic acid that were 

quantified according to Wyrepkowski et al. (8). 

Still, the results by Souza et al. (45) demonstrated 

that the extract of the leaves of C. ferrea has a 

hypoglycemic action and decreased triglyceride 

levels, which contradicts our findings regarding 

triglycerides, but demonstrates that to some 

extent this plant interferes with the metabolism 

of different lipid molecules. It is suggested that 

tannins may have an insulin-like effect on tissues 

sensitive to their action, this demonstrates that 

they can act on cells by modifying or interacting 

with certain specific proteins found in important 

intracellular signaling pathways and, therefore, 

affect their role in the improvement of hyperglyce-

mia (40, 77). Furthermore, tannins are associated 

with the inhibition of cholesterol biosynthesis, in 

which it inhibits the enzyme hydroxymethylglu-

taryl-CoA reductase, so that its absorption can 

decrease this parameter (78).

However, paracetamol overdose can cause 

hepatotoxicity and nephrotoxicity (79), through 

ROS, which are one of the main mechanisms of 

renal pathogenesis and which can lead to apop-

tosis and senescence of these cells, in addition 

to fibrosis in the kidney (80, 81). In our studies, 

there was a depletion in GST and an increase in 

protein damage in the PCM group and the extract 

was able to reverse this renal protein damage. A 

similar result was found by Souza et al. (45) who 

used the same oxidative stress model. We can 

suggest that this beneficial effect against protein 

carbonylation may be related to gallic acid that 

has antioxidant and anti-inflammatory effects (82), 

and its protective action consists of the ability to 

inhibit cell damage induced by ROS, in addition to 

regulating positively the expression of glutathione 

peroxidase, although it was not investigated in this 

study, and attenuate the presence of free radicals 

(83). This damage was also seen by Pereira et al. 

(84), in which they used the same experimental 

model, but it was reversed by the ethanolic and 

ethyl acetate stem bark extracts of Copaifera 

multijuga at a concentration of 250 mg kg-1.

In brain tissue, oxidative stress occurs becau-

se this structure is more susceptible, it has high 

metabolic activity, a high density of oxidizable 

substrates and because it has a relatively low 
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antioxidant defense (85). Through this, the meta-

bolism of PCM the cytochrome P450-dependent 

pathway is associated with the development 

of harmful substances, such as NAPQI in brain 

astrocytes and neurons (86, 87). Our findings 

showed that the EXT increased the activity of 

antioxidant enzymes CAT and GST in brain tissue 

and was able to decrease the damage caused 

by the drug to protein carbonylation. This action 

of the extract may be due to the fact that gallic 

acid has the ability to permeate the blood-brain 

barrier and act in a neuroprotective way (88) 

through its antioxidant and free radical scavenging 

properties, inactivating the enzymes responsible 

for production of ROS or by the positive regulation 

of antioxidant enzymes (89), which in this way, 

increased CAT and GST.

It is known through the literature that parace-

tamol overdose causes several damages to the 

organism, however, with the administration of 

the ethanolic extract of C. ferrea it was possible 

to reduce liver damage through the reversal of 

lipid peroxidation (TBARS) and protein damage 

(carbonyl) caused in the three tissues (liver, kid-

ney and brain). The extract was shown to have 

a hypoglycemic and hypocholesterolemic ef-

fect. The antioxidant effect of the extract can be 

demonstrated through its constituents, mainly 

tannins such as gallic acid and ellagic acid. The 

study with this part of the plant is unpreceden-

ted and, therefore, it is necessary to investigate 

further to better elucidate the possible benefits 

of the stem bark of C. ferrea.
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