Assessment of anthropometric and physical profile of selected school-age children in rural and urban setting in South-West Nigeria (NigeriaLINX pilot)

Avaliação do perfil antropométrico e físico de crianças em idade escolar selecionadas em ambientes rurais e urbanos no sudoeste da Nigéria (piloto NigeriaLINX)

Abstract

Objective: the objective of this study was to examine the anthropometric and physical profile of selected school-age children in rural and urban setting.

Methods: the descriptive cross-sectional design was adopted for the study while multistage sampling techniques, which included simple random and systematic sampling techniques, were used to draw samples from the target population. The sample constitute healthy children who voluntarily participated in the study after consent for participation was given by individual parent. Anthropometric measurements for the study included height, weight, sitting height and BMI while the physical fitness tests for the study included sit and reach, handgrip strength, speed bounce, standing broad jump, 10m x 5 shuttles run and multistage fitness test. Z score, STEN score and independent T-Test were used for data analysis.

Results: a total of 222 healthy children with average age of 10 years (male=112, female=109) participated in the study. The results showed that the urban children were taller (Urban=141.3±9.2m; Rural=134±21.3m), heavier (Urban=37.6±10.4kg; Rural=28.2±6.2kg), had more leg power (Urban=105.7±25.5; Rural=49.4±41.0) and arm strength (Urban=15.7±4.1; Rural=13.4±5.2) than rural children. However, the rural children had higher sit and reach score (Rural=25.3±5.8; Urban=22.8±6.0) and completed more laps in multistage fitness test (Rural=35.5±25.5; Urban=12±5.7). The statistical analysis showed that all the variables were significantly different urban and rural children (P<0.05).

Conclusion: the current study shows that the children in the urban and rural settings differed in the selected anthropometric and physical variables. Therefore, the physical education program and infrastructural facilities for physical activity and sport participation for school age children should be designed based on the socioeconomic status, social amenities and level of development of the host community.

Keywords: anthropometrics, physical profile, school-age children, urban, rural.
Resultados: um total de 222 crianças saudáveis com idade média de 10 anos (masculino=112, feminino=109) participaram do estudo. Os resultados mostraram que as crianças urbanas eram mais altas (Urbano=141,3±9,2m; Rurais=134±21,3m), mais pesadas (Urbano=37,6±10,4kg; Rurais=28,2±6,2kg), tinham mais força nas pernas (Urbano=105,7±25,5; Rurais =49,4±41,0) e força de braço (Urbano=15,7±4,1; Rural=13,4±5,2) do que as crianças da zona rural. No entanto, as crianças da zona rural tiveram maior pontuação de sentar e alcançar (Rural=25,3±5,8; Urbana=22,8±6,0) e completaram mais voltas no teste de condicionamento físico multiestágio (Rural=35,5±25,5; Urbana=12±5,7). Todas as variáveis eram significativamente diferentes entre crianças urbanas e rurais (P<0,05).

Conclusão: o presente estudo mostrou que as crianças das áreas urbana e rural diferiram nas variáveis antropométricas e físicas selecionadas. Portanto, o programa de educação física e as instalações de infraestrutura para atividades físicas e participação em esportes para crianças em idade escolar devem ser projetados com base no status socioeconômico, nas comodidades sociais e no nível de desenvolvimento da comunidade anfítria.

Palavras-chave: antropometria, perfil físico, idade escolar, população urbana, população rural.

Introduction

Children in 21st century are less active especially in urban areas (1). Children nowadays preferred to be more inactive when choosing activities such as eating and sleeping as their key activities (2). A study examining differences in physical activity, physical fitness, and overweight among rural and urban children shows that children from rural areas and small cities were more active than urban children (3). In children and adolescents, moderate- and vigorous-intensity physical activity are positively related to reaction time, executive attention and planning (4, 5, 6, 7). Moreover, better physical fitness in the school-age population is associated with better planning, working memory, cognitive flexibility, and inhibition (8). Furthermore, healthier body mass and body mass index (BMI) are associated with improved general cognitive performance and executive functions in the school-age population (9, 10).

The school has been identified as an important setting for promoting the health and well-being of children (11). For example, many school districts in the United States have built upon the required area to focus on meeting the needs of coordinated school health such as nutrition, health education, physical education, physical fitness, mental health, health and safe school environments amongst others (12). Many schools in Nigeria already have programmes that provide students with some physical fitness activities, however, emerging population trends for obesity suggest that children and youth need more physical activity that their current levels (13). Based on the background provided by previous research and given the scarcity of studies describing anthropometric and physical fitness profile of school-aged children in Nigeria, this study provided the anthropometric and physical fitness profile of selected school-age children in rural and urban setting in South-West Nigeria.

Materials and methods

A descriptive cross-sectional research design was adopted for the study. The multistage sampling techniques, which included simple random and systematic sampling techniques, were used to draw samples from the target population. The participants for the study were randomly drawn from two primary schools in the South-western region (rural and urban schools). A total of 222 healthy children with average age of 10 years (male=112, female=109 and prefer not to say=1) voluntarily participated in the study after consent for participation was given by individual parent. The respondents were treated in accordance with the Helsinki Declaration. Anthropometric measurements for the study included height, weight and sitting height. The height was measured to the nearest 0.1 cm using a fixed stadiometer. The weight was measured to the nearest 0.1 kg with a standard scale utilizing a portable balance. The sitting height was measured from the distance between the vertex of the cranium and the line connecting the tuberosities of the ischium.

According to WHO growth charts for Canadian children within 5 and 19 years, weight-for-age was classified into underweight (<3rd percentile) and severely underweight (<0.1st percentile). Height-for-age was classified as stunted (<3rd percentile) and severely stunted (<0.1st percentile). BMI-for-age was classified as wasted (<3rd percentile), severely wasted (<0.1st percentile), overweight (> 85th percentile), obese (>97th percentile), severely obese (>99.9th percentile) (14).
The physical fitness tests for the study included sit and reach, handgrip strength, speed bounce, standing broad jump, 10m x 5 shuttle run and multistage fitness test. The sit and reach test were measured with the sit and reach box. The measurement was taken with the child seated on the floor and using a standardized support, the maximum distance reached with the tip of the fingers by forward flexion of the trunk is measured. Test indicative of amplitude of movement or flexibility. The handgrip strength test was measured using a handgrip dynamometer (TKK 5001, grip A, Takei, Tokyo; range 0–100 kg; accuracy 0.5 kg). Children were standing in a bipedal position maintaining the arm of the tested side straight down with the shoulder slightly abducted (~10° not touching the rest of the body), the elbow in 0° flexion, and the forearm in neutral position and the wrist in 0° flexion. Each child performed the test twice alternately with both hands with 1 min rest between attempts using the same grip span (4.0 cm). The best value of two trials for each hand was chosen, and the average of both hands was registered (kg).

The standing broad jump was measured with the children stood behind the starting line and instructed to push off vigorously and jump as far as possible. The children had to land with the feet together and to stay upright. The test was repeated twice, and the best score was retained. The 10×5 meters shuttle run involved five shuttle runs as fast as possible between two lines 10 meters apart. At each end, participant touched the line with the leg and quickly return to the other line. The multistage fitness test involved running in small groups, back and forth between two lines placed 20m apart. The running pace was determined by an audio signal from a pre-recorded audio file played on a multimedia device. The children were instructed to keep pace with the audio signal so that they completed the 20m running distance between signals. The signals started at a rate designed to give running speed 8.5 km.h⁻¹, this increased by 0.5 km.h⁻¹ every minute so that it became increasingly hard to maintain the required pace. The children were encouraged to complete as many stages as possible. Each one of them was eliminated at a point that could no longer complete the 20m run.

All the analyses were performed using the IBM SPSS Statistics 25, and values of p < 0.05 were considered statistically significant. Frequency, percent, mean, standard deviation, Standard Ten (STEN) score and independent T-Test were used to analyse the collected data for the study. The STEN score was calculated using STEN score = (z-score × 2) + 5.5 (15).

Results

TABLE 1 – Descriptive statistics of the anthropometric and physical variables.

<table>
<thead>
<tr>
<th>Variables</th>
<th>All (n=222)</th>
<th>Urban (123)</th>
<th>Rural (n=99)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anthropometric variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age, year</td>
<td>10.2±1.6</td>
<td>10.1±1.9</td>
<td>10.4±1.2</td>
<td>0.001*</td>
</tr>
<tr>
<td>Height, cm</td>
<td>138±16.2</td>
<td>141±9.2</td>
<td>134±21.3</td>
<td>0.000*</td>
</tr>
<tr>
<td>Sitting Height, cm</td>
<td>76.6±13.1</td>
<td>70.6±4.8</td>
<td>84.1±16.0</td>
<td>0.000*</td>
</tr>
<tr>
<td>Weight, kg</td>
<td>33.4±10</td>
<td>37.6±10.4</td>
<td>28.2±6.2</td>
<td>0.000*</td>
</tr>
<tr>
<td>Physical variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sit and Reach, cm</td>
<td>23.9±6</td>
<td>22.8±6.0</td>
<td>25.3±5.8</td>
<td>0.003*</td>
</tr>
<tr>
<td>Standing Broad Jump, cm</td>
<td>80.6±43.4</td>
<td>105.7±25.5</td>
<td>49.4±41.0</td>
<td>0.000*</td>
</tr>
<tr>
<td>Handgrip, kg</td>
<td>14.5±4.8</td>
<td>15.7±4.1</td>
<td>13.4±5.2</td>
<td>0.000*</td>
</tr>
<tr>
<td>10m x 5 Shuttle Run, sec</td>
<td>19.2±4.8</td>
<td>16.5±2.9</td>
<td>22.6±4.6</td>
<td>0.000*</td>
</tr>
<tr>
<td>Speed Bounce, no</td>
<td>18.1±10.7</td>
<td>25.1±8.4</td>
<td>9.5±6.1</td>
<td>0.000*</td>
</tr>
<tr>
<td>Multistage Fitness Test, laps</td>
<td>22.5±21.1</td>
<td>12±5.7</td>
<td>35.5±25.5</td>
<td>0.000*</td>
</tr>
</tbody>
</table>

* Independent T-Test
Table 1 comprises the descriptive statistics result of the anthropometric (age, height, sitting height and weight) and physical variables (sit and reach, standing broad jump, handgrip, 10m x 5 shuttle run, speed bounce and multistage fitness test) between children in urban and rural areas. The table 1 shows that children from the rural area are slightly older, while the children from the urban are taller. The sitting height result shows that the rural children had more tendency for peak height velocity than the urban children. The result also shows that urban children has more weight than rural children.

According to Table 1 on physical variables, sit and reach test result shows that rural children had more upper trunk flexibility than the urban children. In addition, rural children also performed better in 10m x 5 Shuttle Run and multistage fitness test. However, the urban children performed better standing broad jump, handgrip strength test and speed bounce. The STEN scores showed that weight has the least score among the anthropometric variables for all the children while height has the highest score (Figure 1). In the category for the physical variables, the handgrip test score ranked the lowest while the standing broad jump test ranked the highest from all the children score (Figure 2). The urban and rural children also follow the same order of ranking of anthropometric variables (Figure 1). However, the urban children had the least ranked score in multistage fitness test and highest ranked score in standing broad jump while the rural children had the least ranked score in speed bounce and the highest ranked score in standing broad jump (Figure 2).

The scatterplot comparative results between the current study and WHO growth chart for the Canadian children showed that in male height-for-age the urban children clustered within 25th and 90th percentiles (Figure 3A) while the rural children clustered within 3rd and 50th percentiles (Figure 3B). As for the male weight-for-age, the urban children clustered within 10th and 97th percentiles (Figure 3A) while the rural children clustered within 3rd and 97th percentiles (Figure 3B). As for the male BMI, the urban children clustered within 10th and 99.9th percentiles (Figure 4A) while the rural children clustered within 3rd and 75th percentiles (Figure 4B).
Considering the female height-for-age the urban children clustered within 10th and 97th percentiles (Figure 5A) while the rural children clustered within 3rd and 97th percentiles (Figure 5B). As for
the female weight-for-age, the urban children clustered within 10th and 97th percentiles (Figure 5A) while the rural children 3rd and 90th percentiles (Figure 5B). As for the female BMI, the urban children clustered within 10th and 99.9th percentiles (Figure 6A) while the rural children clustered within 3rd and 75th percentiles (Figure 6B). The independent T-test result on the anthropometric and physical variable differences between urban and rural children showed significant differences for all the variables (p<0.05).

Figure 5. Height for age and weight for age percentiles: a) chart for urban female; b) chart for rural female.

Figure 6. Body mass index for age percentiles: a) chart for urban female; b) chart for rural female.
Discussion

The purpose of this study was to investigate the anthropometric and physical profile of children from the urban and rural setting. With respect to the result of the descriptive statistics the anthropometric and physical variables between children in urban and rural areas indicated that children from the rural area are slightly older while the children from the urban are taller, sitting height of the rural children had more tendency for peak height velocity than the urban children and the urban children had more weight than rural children. A study reported also reported that urban children have a larger physical size compared to rural children because of distinctive lifestyle, differences in ethnic and social background (16). When compared to their urban counterparts, Vietnamese rural children had higher heights and a lower BMI (17). This report is also in line with a study carried out in India (18). The results of this study are similar to other studies on children conducted in other nations. It has been discovered that children from the urban area in Hungary, Brazil, Spain, Greece, and Mexico are taller and heavier than their rural areas (19, 20). Indian punjabi children were reported to have larger height and body weight than rural Indian males and urban Bengalese boys (20, 21) unlike the Kerala boys (23) and Greek children (20). However, a study reported no anthropometric disparities between rural and urban children (24).

Furthermore, the result of the physical variables indicating that the sit and reach test of the rural children had more upper trunk flexibility with the rural children performing better in 10m x 5 Shuttle Run and multi stage fitness test while the urban children performed better standing broad jump, grip strength test and speed bounce. The findings indicated that children in both rural and urban area participates in physical activities. A study reported that indigenous children participate in more physical activities than youngsters in metropolitan areas (3). The independent t-test result on the anthropometric and physical variable differences between urban and rural children showed significant differences for all the variables. The current study agreed with a study (25) that reported that urban children’s BMI is higher than children from the rural area because they participate in fewer athletic activities.

It was reported in a study that Children from the rural area were not overweight or obese, and their BMI, waist circumference, and triceps skinfold were all lower than those of urban children (26). In Turkey, children in metropolitan areas had a higher BMI and skinfold thickness (26, 27, 28). In Oman, urban youngsters had a greater body fat percentage and a higher BMI than their rural areas (25). On the other hand, multiple studies have found that urban children had better fat mass and physical fitness than rural children (24, 25, 26). These disparities in prior research findings demonstrate the impact of urban and rural lifestyle on children’s physical fitness and anthropometric parameters.

Conclusion and Recommendations

The current study shows that the children in the urban and rural settings differed in the selected anthropometric and physical variables. These differences are heterogeneous in research results across different countries, depending on socioeconomic status, social amenities, and the level of development of the host community. Therefore, physical activities should be planned according to these three parameters to achieve optimized results. The pattern of variation would help in designing intervention that will enhance the developmental and performance results. Even though the children are still at the physical discovery stage, intentional nutritional support through school health programs will aid their anthropometric status. The ranked physical variables revealed the need for a more inclusive approach in physical education programs at the rural and urban regions. The program would be more beneficial if it is domain specific. Therefore, the physical education program and infrastructural facilities for physical activity and sport participation for school age children should be designed based on the socioeconomic status, social amenities, and level of development of the host community.
Notes
This study was presented at the International Council of Physical, Health Education, Recreation and Dance, October 2022, Kenya.
We acknowledge the input (LINX project design) of Gareth Stratton and Nils Swindel of the University of Swansea for their supports and guidance on the LINX project worldwide.

Funding
This study receives financial support from Global Challenge Research Fund.

Conflicts of interest disclosure
The authors declare no competing interests relevant to the content of this study.

Authors’ contributions
All the authors declare to have made substantial contributions to the conception, or design, or acquisition, or analysis, or interpretation of data; and drafting the work or revising it critically for important intellectual content; and to approve the version to be published.

Availability of data and responsibility for the results
All the authors declare to have had full access to the available data and they assume full responsibility for the integrity of these results.

References

Grace Otinwa
Ph.D from University of Ibadan. Professor of Human Kinetics in the Faculty of Education, University of Lagos, Akoka, Lagos. Head of Department of Human Kinetics & Health Education (Exercise Physiology specialization); B.Ed in Human Kinetics and Health Education from University of Ibadan. He is Deputy Director of Sports, Afe Babalola University. Associate Professor of Sports Science in the College of Sciences, Afe Babalola University.
Toba Bamitale

Habeeb Owolabi
Ph.D. in Health Education from the University of Lagos (UNILAG), in Akoka, Lagos State, Nigeria. Lecturer II at the Department of Human Kinetics and Health Education, Lagos State University of Education (LASUED), in Otto/Ijanikin, Lagos State, Nigeria.

Gbenga Ajibola
Ph.D. in Sports Administration and Management from the University of Lagos, Akoka-Yaba, Lagos, Nigeria; Master's degree in Sports Administration and Management from the same University; B.Sc. (Edu.) in Physical Education from the University of Benin; Edo State and National Certificate of Education from Adeniran Ogunsanya College of Education, Lagos State. Member and has served on the board of several professional associations, including ICHPER SD, NAPHER SD, NIM, NSSM, etc.; currently work as a lecturer in Human Kinetics and Health Education at the University of Lagos.

MacPherson Ogunsemore
Ph.D in Sports Administration and Management from the University of Lagos, Akoka-Yaba, Lagos Nigeria; M.Ed with specialisation in Sports Administration and Management from the University of Lagos Akoka-Yaba, Lagos Nigeria. Associate Professor at the Department of Human Kinetics and Health Education, Faculty of Education University of Lagos, Akoka-Yaba, Lagos-Nigeria.

Musiliu Owolewa
NCE - Physical and Health Education with specialization in Education for the Hearing impaired children - Federal College of Education (Special) Oyo State; B.Sc. Edu in Health Education - University of Ilorin, Kwara State; M.Ed in Health Education - University of Ibadan, Oyo State; Ph. D in view - University of Lagos, Nigeria.

Mailing Address
Boluwaju Gbenga Jaiyesimi
Afe Babalola University
Ado Ekiti, Ekiti State, Nigeria, 32601

Os textos deste artigo foram revisados pela SK Revisões Acadêmicas e submetidos para validação dos(s) autor(es) antes da publicação.