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Abstract
Objective: the development of new drugs against Methicillin-resistant 
Staphylococcus aureus is a priority to the World Health Organization. So, the 
objective of this study was to evaluate the antibacterial activity and toxicity 
of 5-bromo-3-((4-methoxyphenyl) sulfenyl)-1H-indole (3b) against MRSA.

Methods: minimum inhibitory concentration (MIC) of 3b was determined 
against S. aureus ATCC 29213 and 43 clinical isolates. The time-kill assay 
was performed for 9 isolates. Analysis of variance followed by the post hoc 
Bonferroni test was used for the statistical tests. 

Results and conclusions: the MIC50 and MIC90 of 3b were 4 μg.mL-1 and 16 
μg.mL-1 respectively. In time-kill assay, the 3b showed bactericidal activity to 
all evaluated isolates at concentrations of 1xMIC and 2xMIC and the re-grow-
th effect was not observed. About the toxicity tests, 3b has not presented 
cytotoxicity, mutagenicity, or allergenicity. 3b had particularly good activity 
against MRSA demonstrating high potential for the development of new 
antimicrobials products.

Keywords: anti-MRSA, chalcogenyl-indoles, new antimicrobials, time-kill, 
Staphylococcus aureus.

Resumo
Objetivo: o desenvolvimento de novos antimicrobianos contra Staphylo-
coccus aureus resistentes à meticilina (MRSA) é uma prioridade para a 
Organização Mundial da Saúde. Então, o objetivo desse estudo foi avaliar 
a atividade antibacteriana e a toxicidade do 5-bromo-3-((4-metoxifenil) 
sulfenil)-1H-indol (3b) contra MRSA.

Métodos: a concentração inibitória minima de 3b foi determinada contra S. 
aureus ATCC 29213 e 43 isolados clínicos. O ensaio de curva de morte foi 
realizado para nove isolados. Análise de variância seguida pelo teste post 
hoc Bonferroni foi usada para testes estatísticos. 

Resultados e conclusões: a MIC50 e MIC90 do 3b foi 4 μg.mL-1 e 16 μg.mL-1, 
respectivamente. No ensaio de curva de morte, o 3b demonstrou atividade 
bactericida contra todos os isolados avaliados na concentração de 1xMIC 
e 2xMIC e o recrescimento não foi observado. Em relação aos testes de 
toxicidade, 3b não apresentou citotoxicidade, mutagenicidade ou alergeni-
cidade. 3b apresentou atividade particularmente interessante contra MRSA, 
demonstrando alto potencial para o desenvolvimento de novos produtos 
antimicrobianos.

RESEARCH ARTICLE

Anti-Staphylococcus aureus Methicillin-Resistant (MRSA) Activity of 
a Novel 3-Chalcogenyl Indole
Atividade Anti-Staphylococcus aureus Meticilina Resistente (MRSA) de um novo 
composto 3-Calcogenil Indol

http://dx.doi.org/10.15448/1980-6108.2021.1.41325
https://creativecommons.org/licenses/by/4.0/deed.pt_BR
http://orcid.org/0000-0002-4167-1519
https://orcid.org/0000-0002-5473-9949
https://orcid.org/0000-0002-4149-7012
https://orcid.org/0000-0002-4149-7012
https://orcid.org/0000-0002-4149-7012
https://orcid.org/0000-0002-4149-7012
https://orcid.org/0000-0002-4149-7012


2/8 Scientia Medica Porto Alegre, v. 31, p. 1-8, jan.-dez. 2021 | e-41325

Palavras-chave: anti-MRSA, chalcogenil-indóis, 
novos antimicrobianos, ensaios de curva de morte, 
Staphylococcus aureus.

ABBREVIATIONS: 3b, 5-bromo-3-((4-methoxyphenyl)
sulfenyl)-1H-indole; ATCC, american type culture col-
lection; CFU, colony forming unit; dimethylsulfoxide; 
MIC, minimal inhibitory concentration; MRSA, methi-
cillin-resistant Staphylococcus aureus.

Introduction

The excessive use of antimicrobials in human and 

veterinary medicine has increased the prevalence 

of resistant microorganisms, leading to therapeutic 

failure and high mortality rates. In this context, the 

World Health Organization has published a list of 

bacteria with epidemiological importance. This 

list included Methicillin-Resistant Staphylococcus 

aureus (MRSA) as a high-priority issue (1). 

Meanwhile, the discovery of new classes of 

antimicrobials has undergone a gradual decline 

in recent decades due to difficulties to identify 

new natural or synthetic drugs with low toxicity 

and a relevant spectrum of antimicrobial proper-

ties, along with economic and legal concerns 

(2). One interesting approach in the discovery of 

new drugs is studying the “privileged scaffolds”, 

which are structures that can interact with diffe-

rent molecular targets due to their appropriate 

molecular size. Substituents can be built into 

these structures and it allows the construction 

of libraries of highly diverse compounds3. Indoles 

are a well-known example of privileged scaf-

folds and several commercial drugs (including 

indomethacin, ondansetron, tadalafil, delavirdine 

among others) are indole derivatives. These drugs 

interact with a myriad of molecular targets (3).

Within our ongoing research program seeking 

new molecules with antimicrobial properties(4) for 

future in vivo studies, a library of 14 3-sulfenyl- and 

3-selenyl-indoles were screened for antibacte-

rial activity. The 5-bromo-3-((4-methoxyphenyl) 

sulfenyl)-1H-indole, here called 3b (Figure 1) 

presented the most promising results in scre-

ening tests, especially against Staphylococcus 

spp. That is the reason why this study aimed 

to deeply evaluate the activity of 3b against S. 

aureus, mainly MRSA strains. 
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Figure 1 – Chemical structure of 5-bromo-3-((4-me-
thoxyphenyl)sulfenyl)-1H-indole (3b).

Matherial and Methods

Study area

The study was developed at Applied Microbio-

logy Laboratory (Federal University of Rio Grande 

do Sul) from March 2016 to March 2018.

Experiments

The preparation of 3b was performed as pre-

viously described by Azeredo et al. (5). The crude 

product was purified by column chromatography 

by using a mixture of ethyl acetate/hexanes 

(20:80) as eluent. The compound was characteri-

zed based on the melting point (when solid) and 

infrared and 1H and 13C NMR spectra (5).

The microdilution broth was performed to 

determine the Minimal Inhibitory Concentration 

(MIC), according to the Clinical and Laboratory 

Standards Institute (6). The 3b was prepared in 2% 

dimethylsulfoxide and diluted in Mueller-Hinton 

broth. The compound was tested in concentra-

tion ranged from 0.125 to 32 µg.ml-1 against S. 

aureus ATCC 29213 and 43 clinical isolates of S. 

aureus (including 25 MRSA) from the library of 

Laboratory of Research in Bacterial Resistance 

(LABRESIS). The isolates were previously identi-

fied by matrix-assisted laser desorption/ioniza-

tion time-of-flight mass spectrometry using the 

equipment of Bruker in its ion positive mode. The 

software BioTyper (Bruker, version 3.4) was used 

to analyze results. 

Nine clinical isolates of S. aureus were selected 

according to their susceptibility profile for time-kill as-

say, which was performed as described by Isenberg 

(7) and following recommendations of Clinical and 

Laboratory Standards Institute (6). Bacterial inoculum 
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was incubated at concentrations corresponding to 

0.5x, 1x, and 2x the MIC of 3b. Aliquots of 50 μL were 

taken at 0, 1, 2, 4, 6, 12, and 24 h. After serial dilutions, 

20 μL of each dilution was plated in mannitol salt 

agar and incubated for 18 to 24h at 35ºC for CFU 

counting. The assay was performed in duplicate.

The human leukocyte cultures were prepared 

according to the methodology described by Dos 

Santos et al. (8) to evaluate the genotoxicity and 

mutagenicity (9,10). Phosphate buffered saline (PBS) 

pH 7.4 was used as the negative control and 3 μM 

bleomycin as the positive control. 3b was evaluated 

in a concentration of 32 µg ml-1. Cell cultures were 

incubated (5% CO2, incubator model MCO19AIC, 

Sanyo) for 72 h at 37 °C. Cell viability was assessed 

with 0.2% trypan blue (Sigma-Aldrich), according to 

Burow et al. (9). The Hen´s Egg Test on the Chorio-

allantoic Membrane was used to allergenicity test (11). 

Analysis of variance followed by the post hoc Bon-

ferroni test was performed in the statistical analysis 

of toxicity test results. Results with p < 0.05 were 

considered significant. Data were analyzed using 

the GraphPad PRISM version 5.02 software program. 

The assays were performed in duplicate.

Results

The most of the clinical isolates selected to 

time-kill assay were resistant to β-lactams (MIC90: 

oxacillin 64 μg.mL-1; Piperacillin + Tazobactam 16 

μg.mL-1; Ceftriaxone 64 μg.mL-1; Meropenem 16 

μg.mL-1) and all of them were susceptible to le-

vofloxacin, tigecycline, and vancomycin. The MIC 

of 3b was 4 μg.mL-1 for 4 isolates (including ATCC 

strain) and 8 μg.mL-1 for the remaining 6 isolates. 

Figure 2 presents the results of the time-kill 

assay. The 3b demonstrated bactericidal activity 

(LogΔ CFU ml-1 > 3) for all isolates and ATCC 29213 

strain at concentrations of 1xMIC and 2xMIC. For 

control strain, S. aureus ATCC29213 the experiment 

was performed with oxacillin (Figure 2A) and with 

the 3b (Figure 2B). Figures 2C-K represent, the 

results of time-kill using 3b for isolates 442, 444, 

459, 460, 463, 467, 469, 480 and 487. Each figure 

shows the results of experiments with 1/2x (blue 

line), 1x (red line), and 2x (green line) the MIC of 

3b for the isolate tested.
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Figure 2 – Time-kill curves of oxacillin and compound 3b for 9 clinical isolates and S. aureus (ATCC 29213). 
A: oxacilin. B-K: compound 3b. dots: 0.5x MIC; square: 1xMIC; triangle: 2xMIC; X: GC - growth control (growth 
of bacteria without any antibiotic at the medium).
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The bactericidal activity (LogΔ CFU ml-1 > 3) 

against isolates 442, 463, 469, 480, and 487 at 1xMIC 

was observed in the first hour of incubation (Figure 

2 C, G, I, and K), while for the isolates 444 and 467 

the same effect was demonstrated after 4h (Figure 

2, D and H). Compound 3b presented bactericidal 

activity toward the whole bacterial panel at 2xMIC 

after 1h (Figure 2 B-K).

At subinhibitory concentrations (0.5xMIC), 3b 

was bactericidal against isolate 444 (after 24h), 467 

(after 12h), 480 (after 24h), and 487 (after 12h) (Figure 

2 D, H, J, and K). However, a re-growth of 487 was 

observed after 24h of the experiment (Figure 2 K). 

When the bactericidal activities of oxacillin and 

3b were compared, it was observed that the oxacillin 

colony count reduced to zero after 12h and 24h for 

S. aureus ATCC 29213 strain at 1xMIC and 2xMIC, 

respectively (Figure 2 A) while compound 3b had 

the same effect after 4h at 1xMIC and 1h at 2xMIC 

(Figure 2 A and B). Besides, re-growth of the ATCC 

strain in the presence of oxacillin at 0.5xMIC was 

observed after 12h. This behavior was not observed 

in the presence of 3b (Figure 2 A vs Figure 2 B).

The viability of human leukocytes was approxi-

mately 98% in the presence of 3b and 100% with PBS 

(negative control). The 3b (32 µg.ml-1) caused an in-

crease in DNA strand breaks, which were 173±8.02% 

(p <0.05) higher than PBS (negative control) but 

did not cause cell apoptosis or necrosis. Results 

obtained from the micronucleus test (mutagenicity) 

were evaluated using Fenech’s cytotoxicity index, 

also known as the nuclear division index. The 3b 

showed an nuclear division index of 0.03±0.02 (p 

<0.05), which is similar to the value obtained for PBS 

(negative control). The nuclear division index for the 

3 mM bleomycin (positive control) was 0.31±0.03 (p 

<0.05). In the allergenicity evaluation, the irritancy 

score (IS) was 3.47, while 0.1M sodium hydroxide 

(positive control) showed an irritancy score of 19.9. 

Thus, 3b was non-irritant, non-mutagenic, and 

non-cytotoxic according to our assays. 

Discussion

Indole compounds are interesting privileged 

scaffolds molecules explored for different activities 

in human medicine. Cruz-Muñiz and co-workers 

demonstrated that several compounds as 3-me-

thoxyphenyl-5-bromo-indole that present anti-

-cancer activity also has antimicrobial potential 

(12). Therefore, our group previously evaluated a 

library of 14 3-chalcogenyl indoles against ATCC 

strains, including Gram-positive cocci and Gram-

-negative bacilli. The most promising results were 

observed for the compound 3b, which encouraged 

us to increment antibacterial activity evaluation. 

The 3b has a substituent at the para position of 

the phenyl ring, which seems to be important for 

the Gram-positive spectrum of action since other 

indole derivatives without this characteristic did 

not show activity against Gram-positive at all. 

Many studies have been published that 

showed the antimicrobial activity of the indole 

derivates. Most of them reported activity against 

gram-positive bacteria (13-15) including MRSA. 

On the other hand, some authors identifying 

analogs with enhanced antibacterial activity 

towards gram-negative bacteria and fungi (13,15,16)  

However, although all of the compounds are indole 

derivatives, there are variations in the molecules 

that can alter their activity (16,17).

To the best of our knowledge, this is the first 

study that evaluated the antibacterial activity of 3b 

against MRSA. The 3b caused full growth inhibition 

of several clinical isolates at 1xMIC and 2xMIC. This 

compound also had a bactericidal effect, which 

was maintained throughout the experiment (Figure 

2). Interestingly, 3b was more active than oxacillin 

against S. aureus ATCC 29213 and showed a bac-

tericidal effect against all clinical MRSA isolates. 

Daly et al (14). have found similar results when 

they have evaluated the 2,3 Disubstituted indoles 

against MRSA. Compound 3b demonstrated no 

evidence of cytotoxicity, mutagenicity, or mucous 

irritancy, but seems to present low genotoxicity. 

Nevertheless, the 3b did not cause cell apoptosis 

or necrosis as have been reported for other indole 

derivates. Although there can be restrictions on the 

use of 3b in oral formulations due to its genotoxi-

city, the application as an antiseptic, disinfectant 

and antibiofilm can be promising since medical 

devices are susceptible to S. aureus colonization. 
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Over the last decade, there has been a conside-

rable focus on the prevention of health-associated 

infections, including those caused by MRSA. Most 

clinical isolates included in this study were characte-

rized as MRSA and presented resistance to at least 

3 different classes of antimicrobials analyzed, which 

defines them as multidrug-resistant. This scenario 

is quite similar to what is commonly found in many 

health institutions in Brazil and around the world (18).

Several authors have reported that preventive 

measures, such as the use of antiseptic agents for 

hand hygiene, besides the use of mupirocin and 

fusidic acid, combined or not with oral vancomycin 

for skin decolonization before invasive procedures, 

can reduce the risk of MRSA infections (19). Howe-

ver, bacterial resistance to these topical antibiotics 

highlights that the discovery and development of 

new antibacterial agents are urgently required. 

Conclusion

In this study, we demonstrated that 3b had 

a very good antibacterial activity against MRSA 

without re-growth in vitro. Besides that, it was 

not cytotoxic, mutagenic, and irritant. Therefore, 

the results obtained in this study suggested that 

3-chalcogenyl indoles are promising candidates 

that merit further study. 
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