Abstract

Purpose: to describe a series of cases of older people with a clinical diagnosis of mild cognitive impairment or dementia at elderly long-term residences using virtual reality as cognitive rehabilitation.

Methods: this study is a series of cases. Older adults diagnosed with mild cognitive impairment or dementia were included. Elderly people with visual and/or hearing problems that made it impossible to carry out the training were excluded. The same tests were used after intervention and at follow up after 15 days.

Results: final sample consisted of 13 women and the mean age was 81.77 years (± 6.94). Patients were divided into 2 groups: mild cognitive impairment group and the dementia group. According to the therapeutic objectives aimed at improving fluency, among the results, the improvement in the scores to the group mild cognitive impairment stands out for the phonemic verbal fluency tests 23.63 (± 12.72) pre-test and 29.50 (± 11.14) post-test. There was an improvement in mild cognitive impairment group scores for the phonemic verbal fluency tests 23.63 (± 12.72) pretest and 29.50 (± 11.14) post-test. In the dementia group, test scores were 10 (± 5.47) pretest and 12.80 (± 5.72) post-test. On the semantic verbal fluency test, the mild cognitive impairment group showed improvement 11.00 (± 3.62) pretest and 13.88 (± 6.03) post-test, while the dementia group test scores were 7.60 (± 4.56) pretest and 8.20 (± 5.12) post-test.

Conclusion: regarding phonemic verbal fluency, virtual reality may be a good resource for improving the performance of older adults with mild cognitive impairment. Results were not maintained in the medium term, showing the importance of continual training.

Keywords: virtual reality, neurological rehabilitation, cognitive impairment, dementia, institutionalized elderly health.

Resumo

Objetivo: descrever uma série de casos de idosos com diagnóstico clínico de comprometimento cognitivo leve ou demência em reabilitação cognitiva por realidade virtual.

Métodos: este estudo é uma série de casos. Pacientes idosos com diagnóstico de comprometimento cognitivo leve ou demência foram incluídos. Foram excluídos idosos com problemas visuais e/ou auditivos que impossibilitasse a...
realización del treino. Os mesmos testes foram usados após a intervenção e o acompanhamento após 15 días.

Resultados: a amostra final foi composta por 13 idosas e a média de idade foi de 81,77 años (+ 6,94). Os pacientes foram divididos em dois grupos: grupo com comprometimento cognitivo leve e grupo com demência. Conforme os objetivos terapêuticos que visavam a melhora da fluência, destacou-se, entre os resultados, a melhora nas pontuações do grupo com comprometimento cognitivo leve para os testes de fluência verbal fonémica 23.63 (+ 12.72) pré-teste e 29.50 (+ 11.14) pós-teste. No grupo com demência, os resultados dos testes foram 10 (+ 5.47) pré-teste e 12.80 (+ 5.72) pós-teste. No teste de fluência verbal semântica, o grupo com comprometimento cognitivo leve apresentou melhora 11.00 (+ 3.62) pré-teste e 13.88 (+ 6.03) pós-teste, enquanto os escores do grupo demência foram 7.60 (+ 4.56) pré-teste e 8.20 (+ 5.12) pós-teste.

Conclusão: en relação à fluência verbal fonémica, a realidade virtual mostrou-se um bom recurso para melhorar o desempenho de idosos com déficit cognitivo leve, porém os resultados não se mantiveram em médio prazo, demonstrando a importância do treinamento contínuo.

Palavras-chave: realidad virtual, reabilitación neurológica, comprometimento cognitivo, demência, saúde do idoso institucionalizado.

Resumen

Objetivo: describir una serie de casos de ancianos con diagnóstico clínico de deterioro cognitivo leve o demencia en rehabilitación cognitiva mediante realidad virtual.

Métodos: este estudio es una serie de casos. Se incluyeron pacientes ancianos diagnosticados con deterioro cognitivo leve o demencia. Se excluyeron las personas con problemas visuales y / o auditivos que imposibilitaran la realización de la rehabilitación. Se utilizaron las mismas pruebas después de la intervenpción y en el seguimiento a los 15 días.

Resultados: la muestra final estuvo constituida por 13 mujeres ancianas y la edad media fue de 81,77 años (+ 6,94). Los pacientes se dividieron en 2 grupos: grupo de deterioro cognitivo leve y grupo de demencia. Hubo una mejora en las puntuaciones del grupo de deterioro cognitivo leve para las pruebas de fluidez verbal fonémica 23.63 (+ 12.72) preprueba y 29.50 (+ 11.14) postprueba. En el grupo de demencia, las puntuaciones de la prueba fueron 10 (+ 5.47) preprueba y 12.80 (+ 5.72) después de la prueba. En la prueba de fluidez verbal semántica, el grupo de deterioro cognitivo leve mostró una mejoría 11.00 (+ 3.62) antes de la prueba y 13.88 (+ 6.03) después de la prueba, mientras que las puntuaciones del grupo de demencia fueron 7.60 (+ 4.56) pretest y 8.20 (+ 5.12) postest.

Conclusión: en cuanto a la fluidez verbal fonémica, la realidad virtual demostró ser un buen recurso para mejorar el desempeño de los pacientes ancianos con deterioro cognitivo leve. Los resultados no se mantuvieron en el mediano plazo, mostrando la importancia de la formación continua.

Palabras clave: realidad virtual, rehabilitación neurológica, deterioro mental, demencia, salud del anciano institucionalizado.

Introduction

The increase in life expectancy has given rise to higher rates of mild cognitive impairment (MCI) and dementia among the older adults. MCI is defined as a syndrome characterized by cognitive decline with essentially preserved activities of daily living (ADLs)¹. Annually, 10%-15% of patients with MCI are at risk for progressing to dementia²,³. Dementia is a condition in which one or more cognitive domains are significantly impaired, leading to a loss in autonomy in ADLs⁴. However, several studies have reported benefits following cognitive stimulation in these populations, with satisfactory results concerning the maintenance and improvement of cognitive processes, quality of life, and functional abilities⁵,⁶.

With technological advances, new strategies have been tested for cognitive rehabilitation. One of them is virtual reality (VR), a technology used for several purposes that simulates real-life environments or activities⁷,⁸. This strategy provides an immersive, interactive, and three-dimensional virtual experience that stimulates the patient’s active participation, even in cases of cognitive impairment. VR training offers activities within rich, safe, and challenging environments, promoting motor stimuli and increased neuroplasticity⁹,¹⁰.

A growing body of studies¹¹-¹⁶ on cognitive training with VR has shown it to be an efficient resource for cognitive improvement in older people with MCI and dementia, for memory, dual-task, and visual attention tasks. Nevertheless, further research is necessary for its effectiveness on compromised functions, due to the methodological variety among studies. Therefore, the aim of this study is to describe a series of cases of older people with a clinical diagnosis of MCI or dementia sing virtual reality as cognitive rehabilitation.
Methods

This study is a series of cases. Training and data collections were carried out from July 2019 to February 2020 at elderly long-term residences, in the city of Porto Alegre/RS. Older residents with medical diagnosed clinical MCI or dementia were included, once permission was obtained from these patients or their legal guardians. Residents with uncorrected vision impairment or hearing loss that precluded VR training were excluded.

This research was approved by the institution's Ethics and Research Committee, under protocol number 10020919.700006347. The Free and Informed Consent Form (FICF) was signed by legal guardians since the participants had cognitive impairment.

Pre-and post-tests

Initially, sociodemographic and clinical data were collected from medical records (e.g., age, sex, education, length institution care and medical diagnoses). Then, a battery of cognitive tests was carried out before intervention, immediately after the intervention, and at the 15-day follow-up. The following tests were used.

- The Mini-Mental State Examination (MMSE): this is a cognitive screening test, with cut-off points stratified according to years of formal education (≥ 28 points; 5 - 8 years = 26 points; 1 - 4 years = 25 points; illiteracy = 20 points).
- The Montreal Cognitive Assessment (MoCA): this test assesses cognitive functions such as visuospatial apraxia, naming, memory, attention, language, abstraction, and orientation. A score of 26 or higher is expected for individuals with preserved cognition.
- Phonologic verbal fluency test (PVF): with this task several aspects of cognition are evaluated, such as attention, the ability to inhibit the processing of other categories, and the ability to perform semantic search restrictions. The patient is asked to name words beginning with the letters F, A, and S. The score is influenced by age and education.
- Semantic verbal fluency (SVF): evaluates the ability to search and retrieve data established in long-term memory, within a given category. This is a very sensitive test for assessing access to and organization of semantic mental lexicon. The score is influenced by education.

Intervention

The cognitive training with VR consisted of the presentation of a video shown on a mobile telephone, coupled with VR BOX glasses (Virtual Reality Glasses). Images were projected through an immersive three-dimensional (3D) visualization system. Subsequently, a sequence of cognitive stimulation exercises was conducted, based on the VR presentation. A daily session was held over a period of five consecutive days. Each session lasted 30 minutes each. Three videos were presented with a maximum duration of 2 min 30 s each, featuring the themes of wild animals, marine animals, and food.

The cognitive training tasks aimed to work on naming, evocation, and categorization. Each training day included 7 tasks for a specific video. The training was carried out by a researcher blinded to the clinical diagnosis, as well as to the cognitive variables being investigated. Table 1 describes the 5 sessions.
Table 1 – Description of consecutive sessions of VR training

<table>
<thead>
<tr>
<th>Session</th>
<th>Cognitive training with VR per session</th>
</tr>
</thead>
</table>
| 1st session | 1. SVF task - naming as many animals as possible in 1 minute
2. Watching a VR video about wild animals (2 min 30 s).
3. Immediate memory task - recognition of images from the video, presented as 20 printed images (10 images from the video and 10 that were not).
4. Watching a VR video about wild animals (2 min 30 s).
5. Attention task - matching names with pictures, using the words LION, ZEBRA, BIRD, DEER, ELEPHANT.
6. Categorization task - presentation of images for categorization (e.g., domestic animal: wild animal).
7. Long-term memory task (at the end of each session) - presentation of 5 images from the video and verification of recognition. |
| 2nd session | 1. SVF task - naming as many animals as possible in 1 minute
2. Watching a VR video about marine animals (2 min 30 s).
3. Immediate memory task - recognition of images from the video, presented as 20 printed images (10 images from the video and 10 that were not).
4. Watching a VR video about marine animals (2 min 30 s).
5. Attention task - matching names with pictures, using the words FISH, DOLPHIN, TURTLE, CORAL, DIVER.
6. Categorization task - presentation of images for categorization (e.g., domestic animal: wild animal).
7. Long-term memory task (at the end of each session) - presentation of 5 images from the video and verification of recognition. |
| 3rd session | 1. SVF task - naming as many types of food as possible in 1 minute
2. Watching a VR video about food (2 min 30 s).
3. Immediate memory task - recognition of images from the video, presented as 20 printed images (10 images from the video and 10 that were not).
4. Watching a VR video about food (2 min 30 s).
5. Attention task - matching names with pictures, using the words TOMATO, SHRIMP, APPLE, PEPPER, LEMON.
6. Categorization task - presentation of images for categorization (e.g., vegetable: fruit).
7. Long-term memory task (at the end of each session) - presentation of 5 images from the video and verification of recognition. |
| 4th session | 1. SVF task - naming as many animals as possible in 1 minute.
2. Watching a VR video about wild animals (2 min 30 s).
3. Immediate memory task - recognition of images from the video, presented as 20 printed images (10 images from the video and 10 that were not).
4. Watching a VR video about wild animals (2 min 30 s).
5. Attention task - matching names with pictures, using the words LION, ZEBRA, BIRD, DEER, ELEPHANT.
6. Categorization task - presentation of images for categorization (e.g., domestic animal: wild animal).
7. Long-term memory task (at the end of each session) - presentation of 5 images from the video and verification of recognition. |
| 5th session | 1. SVF task - naming as many animals as possible in 1 minute.
2. Watching a VR video about marine animals (2 min 30 s).
3. Immediate memory task - recognition of images from the video, presented as 20 printed images (10 images from the video and 10 that were not).
4. Watching a VR video about marine animals (2 min 30 s).
5. Attention task - matching names with pictures, using the words FISH, DOLPHIN, TURTLE, CORAL, DIVER.
6. Categorization task - presentation of images for categorization (e.g., domestic animal: wild animal).
7. Long-term memory task (at the end of each session) - presentation of 5 images from the video and verification of recognition. |
Statistical analysis

A descriptive analysis of the data was performed according to the characteristics of each variable (continuous or categorical), with mean and standard deviations/interquartile ranges or frequencies and percentages. SPSS version 22.0 software was used.

Results

The final sample consisted of 13 older women submitted to five VR sessions, divided into two groups. The first group consisted of 8 women diagnosed with MCI (the MCI group) and the second group containing 5 women diagnosed with dementia (the dementia group). The mean age was 81.77 (± 6.94) years. The mean age to the MCI Group was 81.75 (± 8.64) years and to the Dementia Group was 81.80 (±4.07) years. The duration of institutionalization is observed that the total average time was 1.00 (± 0.519) years, for the MCI Group it was 1.63 (± 0.518) years and for the Dementia Group it was 1.20 (± 0.447) years. As for the education of the participants, analyzed in years of study, an overall average of 11.62 (± 3.28) years is observed, to the MCI Group it was 11.88 (± 3.83) years and to the dementia group was 11.20 (± 2.49) years.

Table 2 shows the characteristics of the study sample and the results. On tests immediately after the intervention, the MCI group showed an improvement in cognitive performance in MMSE, MoCA, and PVF and SVF scores.

Discussion

This study shows an improvement in the scores of the group with mild cognitive impairment for the pre-test and post-test phonemic verbal fluency tests after virtual reality as cognitive rehabilitation. Results showed a better benefit for the older participants in the MCI group, through the improvement scores on the cognitive tests and the maintenance of their cognitive performance 15 days after the intervention. In the dementia...
group, the improvement was restricted to verbal fluency tests with a decline in these results by follow-up. Our results corroborate other studies20,21, which found an improvement in the cognitive performance of elderly people with dementia after undergoing cognitive intervention with VR. In addition, the number of sessions used is in line with literature22, which has described a training period of 4 weeks as sufficient for obtaining improvements in the participants’ performance.

Other research23,24,25 suggested that memory training can improve cognitive functioning in healthy older people and allow at least partial compensation for cognitive deficits in elderly people with MCI, due to factors such as age, education level and neuroplasticity26. It is believed that the newly learned strategies, which are still part of a learning process, may demand more attention and faster information processing from the older individuals27, obliging them to focus on using these strategies. For a period of time, this may delay performance benefit. When the strategy is fully learned, they start to recruit fewer processing resources and can generate greater performance benefit while using it28,29.

The fact that the MCI group presented better responses in general cognitive functioning when compared to the dementia group, can be justified by the principle of neuroplasticity. While dementia is a chronic disease, characterized by a progressive deterioration in cognitive function, MCI patients have different abilities which may compensate in functional organization7. The results of this study can contribute to the search for better therapeutic resources, especially the better use of VR techniques in the cognitive rehabilitation of older patients30.

Memory training with the aid of software was also the focus of another study31, in which each group of exercises stimulated a certain cognitive function. Each participant underwent two individual training sessions with a difference of one month between them. The testing was carried out in three moments: before training, after training, and after three months. The study included ten elderly people with MCI, ten with Alzheimer’s disease (AD), and a control group with three participants. The two groups that participated in the training showed improvements in different cognitive functions. The AD group improved in memory and attention, while the MCI group improved in working memory and psychomotor learning. Both groups improved their short and long-term memories, both verbally and visually. The control group showed no improvement. Although both tests involve verbal fluency, as their characteristic is different (phonological or semantic) they involve different skills as well as their score taking into account age and education (in phonology) and only education (in semantics), this is our hypothesis for immediate gains after training between MCI and dementia groups.

In our study, the level of performance of the MCI group was preserved for approximately 15 days. After that period, a decline in the performance of the MCI group on cognitive tasks was observed. However, these scores were still better than those of the pre-test, showing that the improved performance remained partial in this group. Results were found to be independent of patient education and length of institutional care. Intensive training points to positive effects in this population in the medium term. Studies found that the maintenance of benefits was restricted to the tasks trained, the main studies on cognitive training shows that the main results are limited to the trained activities, without generalizations to activities of daily living. Based on these studies, the skills trained were those that elderly would use and that is why the test was based on these tasks.

The main limitations of this study were the small sample size, only one patient sex, and the lack of a control group. In addition, the scarcity of studies on cognitive training with VR in older prevents better comparisons regarding the reality of this population. For future research, we believe that therapy with more sessions may present more modifying results in the performance of these patients; furthermore, a randomized clinical trial needs to be conducted.
Conclusion

VR improved phonologic verbal fluency test in MCI after five sessions of intervention and the results were maintained in the follow up after 15 days. In this group. Although other studies with a large sample and longer follow-up are necessary, these results pointed to virtual reality as an interesting resource for the cognitive training of this population.

Conflicts of interest

The authors declare no conflicts of interest.

References

10. Levin MF. Can virtual reality offer enriched environments for rehabilitation? Expert Rev Neurother. 2011;11(2):153-5. https://doi.org/10.1586/ern.10.201

Bruna Graciele Souza Alós

Fonoaudióloga Clínica, em Porto Alegre, RS, Brasil; Graduação em Fonoaudiologia pela Universidade Federal do Rio Grande do Sul (UFRGS), em Porto Alegre, RS, Brasil.

Mailing address

Maira Rozenfeld Olchik

Universidade Federal do Rio Grande do Sul

Rua Ramiro Barcelos, 2492

Santa Cecília, 90035-004

Porto Alegre, RS, Brasil

Os textos deste artigo foram conferidos pela Poá Comunicação e submetidos para validação dos autores antes da publicação.