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Abstract: Oppositional geometry, i.e. the study 
of the “oppositional figures”, has long been 

approached in a rather random way. In deontic 

logic, beyond the classical “deontic square” (a 

particular application of the logical square, or 
square of opposition), this has given birth in 1972 

to Kalinowski’s “deontic hexagon” (a particular 

application of Jacoby’s, Sesmat’s and Blanché’s 
“logical hexagon”), to Joerden’s “deontic 

decagon” (1987), to McNamara’s “deontic 

dodecagon” and “deontic octodecagon” (1996) 
and to Wessels’ “deontic decagon” and “deontic 

hexadecagon” (2002, 2004). Now, since 2004 

there is a formal, mathematically founded theory 

of all these kinds of structures, a new flourishing 
branch of logic and geometry, “N-Opposition 

Theory” (for short: “NOT”), also called 

“oppositional geometry”. This general theory of 
the oppositions among n terms shows that after 

the logical square (n=2) and hexagon (n=3), there 

is a logical cube (n=4), and that these three 

oppositional solids belong to an infinite series of 
“oppositional bi-simplexes of dimension m” (in 

fact, the theory tells much more). Using NOT, in 

this paper we examine McNamara’s “deontic 
dodecagon”, which aims at expressing this 

author’s system DWE (for “Doing Well 

Enough”), one of the standard models for dealing 
logically with “supererogation”. After showing 

that, despite the fact that its underlying DWE 

system is logically sound and complete (as 

proven by Mares and McNamara in 1997), the 
oppositional geometry presented as being a 

“deontic dodecagon” is mistaken (for in NOT’s 

terms this polygon is irremediably both 
oppositionally redundant and oppositionally 

incomplete) we show how to correct it, strongly 

but successfully, within the NOT framework. 

Keywords: Deontic logic; Oppositional 

Geometry; McNamara; DWE; supererogation. 

 

 

Resumo: Geometria oposicional, isto é, o estudo 
das “imagens opostas”, tem sido estudada de uma 

maneira bastante randômica. Na lógica deôntica, 

para além do “quadrado deôntico” clássico (uma 

aplicação particular do quadrado lógico, ou 
quadrado da oposição), estudos deram origem em 

1972 ao “hexágono deôntico” de Kalinowski 

(uma aplicação particular do “exágono lógico” de 
Jacoby, Sesmat e Blanché), ao “decágono 

deôntico” de Joerden (1987), ao “dodecágono 

deôntico” e “octodecágono deôntico” de 
McNamara (1996) e ao “decágono deôntico” e 

“hexadecágono deôntico” de Wessel (2002, 

2004). Atualmente, desde 2004 há uma teoria 

formal, matematicamente fundamentada, de 
todos estes tipos de estruturas, um novo e 

florescente ramo de investigação na geometria e 

na lógica, “N-Opposition Theory” 
(abreviadamente: “NOT”), também chamada 

“geometria oposicional”. A teoria geral das 

oposições entre n termos mostra que para além 

do quadrado lógico (n=2) e do hexágono (n=3), 
há um cubo lógico (n=4), e que estes três sólidos 

oposicionais pertencem uma série infinita de “bi-

simplexos oposicionais de dimensão m” (de fato, 
a teoria diz mais que isso). Ao usar NOT, neste 

artigo examinamos o “dodecágono deôntico” de 

McNamara, que expressa o sistema DWE 
(abreviatura para “Doing Well Enough”) do autor 

e é um dos modelos padrão para o tratamento 

lógico da “superrogação”. Após mostrar que, a 

despeito de o sistema DWE ser logicamente 
consistente e completo (conforme demonstrado 

por Mares e McNamara em 1997), a geometria 

oposicional apresentada como “dodecágono 
deôntico” está errada (pois, em termos de NOT, 

este polígono é irremediavelmente ambos, 

oposicionalmente redundante e oposicionalmente 

incompleto), nós mostramos como corrigi-la, de 
maneira forte porém bem-sucedida, dentro da 

estrutura NOT.  

Palavras-chave: Lógica Deôntica; Geometria 

Oposicional; McNamara; DWE; superrogação. 
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1. The science of the logical-geometrical oppositions: “n-opposition theory”, alias “NOT” (2004) 

 

What is “n-opposition theory”? It is a new mathematical theory comprising Aristotle’s “logical 

square” (or “square of opposition”) and Jacoby’s, Sesmat’s and Blanché’s “logical hexagon” as 

particular cases of a more general logical-geometrical notion, that of “oppositional bi-simplex of 

dimension m”. Remind that in Aristotle’s “opposition theory” (generating the logical square) there are 

4 relations forming the conceptual framework necessary in order to think opposition: contrariety 

(represented conventionally in blue), subcontrariety (in green), contradiction (in red) and 

subalternation (in grey)
1
. Jacoby’s (1950), Sesmat’s (1951) and Blanché’s (1953) logical hexagon, 

despite its innovative power, still respects the quaternality of the opposition relations “package”: what 

changes in it is just the number of opposed terms, 3 instead of 2, but not the number of “kinds” (or 

colours) of different oppositions (cf. figure 1)
2
. 

 

Moreover, because the square and the hexagon are constructed upon, respectively, a segment 

(of contrariety) and a triangle (of contrariety), and because the segment and the triangle are elements 

of a mathematically well-known series, that of the “geometric simplexes”, NOT shows that this 

generalisation leading from the square to the hexagon can in turn be generalised using the 

mathematically classical notion of “geometrical simplex of dimension m” (cf. fig. 2). 

 

                                                             
1 For a couple of things : “contradiction” (i.e. classical negation) is defined as the impossibility of being both 

false and the impossibility of being both true; “contrariety” as the possibility of being both false but with the 

impossibility of being both true; “subcontrariety” as the impossibility of being both false, with the possibility of 

being both true; “subalternation” (i.e. implication) as the possibility of being both false and the possibility of 

being both true, with the impossibility of having the first true and the second false (subalternation is an ordered 

relation, i.e. an arrow going from a first to a second – not so the three other relations, which are symmetric 

relations). 
2 For having a different number of kinds (or colours) of oppositions, cf. the notion of “oppositional poly-simplex 

of dimension m” (and that of “Aristotelian pq-semantics”), cf. Moretti [2009 PhD] and Angot-Pellissier [2014?]. 
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As it happens, a “logical bi-simplex (of dimension m)” is made of two twin geometrical simplexes (of 

dimension m), one conventionally depicted in blue, for contrary terms: its vertices are, for any couple 

of them, mutually contrary; and one conventionally depicted in green (the oppositional dual of the 

first) for subcontrary terms: its vertices are, for any couple of them, mutually subcontrary (cf. fig. 3). 

 

The first striking result of NOT is that, in each case (i.e. for any integer value of m, m2) we can build 

an elegant solid expressing perfectly logical opposition for n terms (where n=m+1): think of n 

enemies, or n competitors. That is, upon contrariety and subcontrariety admitted by construction (as 

being two logically interpreted geometrical simplexes, blue and green), contradiction is expressed by 

the lines (conventionally red) connecting symmetric terms by central symmetry (in other words, by red 

diagonals, cf. fig. 4). 

 

Finally, subalternation (i.e. logical implication) can be expressed by arrows (conventionally grey) 

starting from any blue vertex to any green vertex (excepting the one centrally symmetrical to it). The 

result of this is, in each case (i.e. for any n), an elegant oppositional (hyper-)solid, furnished with all 

the logical properties that Aristotle (or his heirs) had discovered for the square, and that Jacoby, 

Sesmat and Blanché had proven to hold for the hexagon as well, that is (broadly), the fact that: 

1) contradiction is always expressible as central symmetry; 

2) there is a duality of the blue and green symmetric oppositional simplexes; 

3) there are arrows going systematically from each blue point to each green one, except for the 

couples of blue and green points which are mutually centrally symmetric; 

4) between any two points, there is one and only one opposition relation. 

All these oppositional structures (i.e. the oppositional bi-simplexes of dimension m) compose a series 

of so-called “n-structures” (cf. fig. 5). 
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NOT thus both shows what the possible oppositional figures are – for instance, the next figure, after 

Aristotle’s logical square (i.e. the oppositional bi-segment) and Jacoby-Sesmat-Blanché’s logical 

hexagon (i.e. the oppositional bi-triangle) is the previously unknown “logical cube” (or oppositional 

bi-tetrahedron) – and how to obtain them (again, by a suited interlacing of two dual oppositional 

simplexes, and by drawing the diagonals and the arrows, cf. Moretti [2004]). 

Having shown the mathematical possibility (and thus the existence) of an infinite series of 

oppositional structures (logical square, logical hexagon, logical cube, …, n-structure, …), conceived 

as oppositional bi-simplexes of dimension m), the next task of the theory is to show that these 

oppositional structures, infinite in number and in growing logical-geometrical complexity, are useful, 

that is that they admit meaningful decorations (i.e. attributions of logical or semantic or whatever 

“values”): this oppositional formalism can be used in order to display over solid hyper-space the 

knowledge about the possible oppositional relations between modalities (e.g. the fact that “necessary 

” implies – or does not imply – “possible ”, and so on). This is done by the introduction of two 

suited decorating techniques, that of the modal graphs, or -structures (cf. Moretti [2004]), and that 

very powerful (in fact exhaustive), of the modal graphs’ “settification” (cf. Pellissier [2008])
3
. 

This leads us to one of the methodologically most important teachings of the theory, the 

distinction made (and to be kept!) between “modal graphs” (or -structures) and “oppositional 

structures” (or - and -structures). The modal graph of any modal system is the diagram showing by 

points (modalities) and arrows (implications) which dependencies there are between the “basic 

modalities” of this system (a basic modality is one which cannot be reduced logically to the iteration 

or composition of smaller ones)
4
; whereas the oppositional structures (i.e. the n-structures and the 

n-structures) of a modal system are its modal oppositions, i.e. the oppositional bi-simplexes of 

dimension m (plus their closures, cf. infra) which can be decorated by the modalities (basic or not) 

generated (by compositions using the propositional binary connectives) by the given modal system’s 

modal graph. Note that whereas modal graphs can have almost any possible shape, the oppositional 

                                                             
3 Using another strategy Hans Smessaert arrives to comparable results (cf. Smessaert [2009]). 
4 For this notion of “basic modality” of a given modal system, cf. B. Chellas, Modal Logic. An Introduction, 

Cambridge University Press, Cambridge, 1980, p. 149, as well as Hughes G.E. and Cresswell M.J., A New 

Introduction to Modal Logic, Routledge, London, 1996, p.55, 56 and 60 . Here we take in consideration only the 
modal systems of which the number of basic modalities is finite (as is, among others, the case with the modal 

systems S4, S5 and KD45). 
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structures belong to two fixed lists, that of the series of the oppositional bi-simplexes of dimension m 

(the n-structures, cf. supra) and that of their closures (the n-structures). This distinction between 

modal graphs and oppositional structures is tricky (slippery), because some mathematical objects, like 

the logical square, may seem to belong to both. And, as a matter of fact, the two are generally always 

confused – logicians and philosophers look for geometrical oppositions in a random way – making it 

impossible to reach, starting from a given modal system, the real complete catalogue of the possible 

oppositions of the logical space of this modal system. As an example, in the case of the Lewis system 

S5 (the “universal system”, i.e. the modal counterpart of classical logic) it can be shown that its modal 

graph is constituted by six basic modalities (cf. left side of fig. 6), whereas the complete set of the 

oppositional structures decorated by it (via Pellissier’s method, cf. Pellissier [2008]) is represented 

geometrically by a very regular 3D solid with 14 vertices, 36 edges (arrows) and 24 sides (triangles 

delimited by arrows), Sauriol’s “logical tetrahexahedron” (cf. right side of fig. 6)
5
. 

 

Remark on the figure of the logical (or oppositional) tetrahexahedron (i.e. the 3-structure) that the 

system S5 contains thus, as its oppositional structures (i.e. as its n-structures), not only the well-

known logical square (Aristotle’s square) and logical hexagon (Jacoby-Sesmat-Blanché’s hexagon, 

here, in fig. 6, the black hexagon), but exactly one logical cube (the figure’s core), six logical “strong” 

hexagons (here in black, blue, red, green, orange, violet) – plus four logical “weak” ones, 

geometrically non-planar, inside the cube
6
 – and 18 logical squares (three for each strong hexagon)! 

                                                             
5 Using another strategy, Hans Smessaert found independently a similar result in terms of a “rhombic 

dodecahedron”, which is an equivalent of the logical tetrahexahedron containing all its 14 vertices (it does not 

highlight the 12 arrows of the logical cube constituting the tetrahexahedron’s heart – but they can be deduced by 

transitivity of the rhombic dodecahedron’s arrows), cf. Smessaert [2009]. 
6 For this distinction between “strong” and “weak” geometrical figures (i.e. oppositional solids), cf. Pellissier 

[2008] and Angot-Pellissier [2012] (for short, in weak figures some logical equivalencies become logical 
implications; geometrically speaking, such figures are “broken”, i.e. they do not belong anymore to a single 

plane, but to three ones two by two perpendicular). Here we only deal with the strong figures (with the exception 
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So, not one logical square (Aristotle), neither three (as classically inside Jacoby’s, Sesmat’s and 

Blanché’s logical hexagon), but 18 ones… 

Among many other useful results of NOT, the following three must be recalled here (at least 

briefly) before we turn to an examination of the deontic polygon of McNamara (the dodecagon). 

Firstly
7
, Pellissier’s set-theoretical method allows for any finite linear modal graph, no matter how 

big) to reduce it to a characteristic set “E”. This set, by a suited set-theoretical “partition technique” 

displayed over it, allows making a complete list of the possible oppositional structures of the starting 

modal system. Secondly, the oppositional structures (i.e. the oppositional bi-simplexes: logical 

squares, hexagons, cubes, …) thus found in each case support a higher geometrical ordering, namely 

that of the series of the oppositional closures or n-structures (cf. Moretti [2009 PhD] and Pellissier 

[2008]) (cf. fig.  7). 

 

This series can be shown to be weakly fractal, for the figure of each term of the series contains as parts 

the figures of the previous terms
8
. The three-dimensional oppositional tetrahexahedron depicted above 

for the Lewisian system S5 (cf. fig. 6 supra) is only one of its terms (as we said, it is the 3-structure). 

 Thirdly, a powerful result shows that modal graphs different in shape can happen to generate 

the same characteristic set “E” (cf. Pellissier [2008]). Which means that such “different” graphs can be 

turned into different decorations of the same abstract n-structure (or oppositional closure), which in 

turn means that they are in some (new) respect oppositionally equivalent (this generates a new kind of 

logical-geometrical equivalence class). Thus NOT seems to offer to logic a new space of possible 

translations. 

                                                                                                                                                                                              
of the logical square, which itself is – as Pellissier has demonstrated, a weak 2-opposition, cf. Angot-Pellissier 

[2012]), which are the standard ones. 
7 Cf. Pellissier [2008]. 
8 The fractal behaviour is made particularly clear in the study of a remarkable fragment of the series of the n-
structures, namely the so-called series of the “oppositional hyper-flowers”, cf. Moretti [2009 PhD], § 11.04.02-

03. 
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 Having briefly recalled these elements (for more ones and for more detailed ones cf. Moretti, 

“Why the Logical Hexagon?”), we can get closer to the proper subject of the present paper. 

 

2. Known results on the exhaustive oppositional geometry of standard deontic logic 

 

Here we recall, in an outrageously brief way, the results we established in Moretti [2009] 

about the exhaustive oppositional geometry of standard deontic logic. The main point to be grasped is 

that the oppositional geometry of standard deontic logic (i.e. the counterpart of the modal system 

KD45) has been perfectly identified inside NOT: it is an oppositional-geometrical space bigger than 

that of alethic modal logic (i.e. S5), but smaller than those, respectively, of epistemic (i.e. S4) and 

tense logic (cf. Moretti [2009 PhD], ch. 17). In NOT’s terms it is equivalent to the 5-structure (the 5-

dimensional oppositional hyper-tetrahexahedron): it is a 5-dimensional solid, gathering n-structures 

(oppositional bi-simplexes decorated deontically), with nN, 2n6. 

 

2.1. The non-linear modal graph of standard deontic logic 

The identification of this oppositional-geometrical space has been made following the 

methodology of NOT. Firstly, an examination has shown that the “basic modalities” of standard 

deontic logic (i.e. KD45) are six: Op, p, p, Op, p, p
9
. Secondly, the examination of their 

mutual relations, i.e. their spatial diagrammatical disposition inside the (non-linear) “modal graph” of 

standard deontic logic, has shown that, differently from alethic modal logic, there are here “isolated 

points” (the null modalities p and p), which are said to be “isolated” insofar no arrow of the modal 

graph (or -structure) touches them (cf. fig. 8)10
. 

 

Thirdly, the numbering method, duly adapted by us to the non-linear case of the isolated points, has 

shown with respect to the system KD45 that the characteristic Pellissier set “E” of this deontic logic is 

E = {1, 2, 3, 4, 5, 6} (cf. fig. 8 supra, right side). 

 

                                                             
9 “Op”  “p is obligatory”, “p”  “it is the case that p”, “p”  “p is permitted”. 
10 This expresses the specific deontic flavour, i.e. the fact that “obligatory” does not imply “real” and that “real” 
does not imply “permitted” (cf. right side of fig. 8), whereas in alethic modal logic “necessary” implies “real” 

and “real” implies “possible” (cf. left side of fig. 8). 
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2.2. The bi-simplicial components of the oppositional space of standard deontic logic 

The translation between deontic basic modalities and symbols (here numbers) composing 

strings is given by the equation table between the deontic modal graph and its numbered version (cf. 

the right part of fig. 8 supra)
11

. Starting from this, and knowing that n-opposition equals (via 

Pellissier’s translation) set-theoretic n-partition – the sets of strict substrings of E represent possible 

n-structures –, it suffices to look for all the n-partitions of the set E: this will give all the oppositional 

bi-simplexes (of dimension n-1) contained in the standard deontic space. The combinatorial result (in 

Moretti [2009] we detail it and study it with many figures) is the following: in the modal system KD45 

there are one 6-partition (a deontic 6-structure), fifteen 5-partitions (deontic 5-structures), sixty-five 

4-partitions (deontic cubes), ninety 3-partitions (deontic hexagons) and 270 deontic squares (cf. fig. 9). 

 

So, the deontic oppositional geometry is much richer than it was thought, that is: it is much 

richer than just one “deontic square” or just one “deontic hexagon”. 

 

2.3.  The 5-dimensional solid of standard deontic logic 

Graphically speaking, the oppositional core of the standard deontic space (i.e. the system 

KD45) can be represented as a 5-structure decorated deontically (in Moretti [2009] we show how 

exactly). This implies that in KD45 there are different kinds of deontic n-structures: actually, all (and 

only) the ones contained in the 5-structure (cf. fig. 10). 

                                                             
11 The table only gives the numbers for the 6 basic modalities (for instance: “O” is equivalent to the string “12”, 

“” is equivalent to the string “135”, etc.). All the other possibilities, all the other modalities, obtainable by 

Boolean combinations of the 6 basic ones (like “O”, etc.), are reachable from the given translation by 

Boolean compositions of the corresponding strings (of numbers): “” corresponds to concatenation, “” to 

intersection and “” to complementation with respect to the set E: for instance, “O” is equivalent to the 

string “13512”, and therefore to the string “1” (cf. Moretti [2009]). 
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Having (very, very briefly!) recalled some of the main theoretical data concerning the 

exhaustive oppositional geometry of standard deontic logic, as it is accessible with the help of NOT, 

we can now turn to our present question, the examination of the classical geometrical approaches 

made, without knowledge of NOT, about deontic logic. 

 

3. The “deontic polygons” proposed, beyond the deontic square, in the known literature 

 

As long as we know, there have been at least four scholars who have made proposals in order 

to complexify the geometrical characterisation of deontic logic. 

 

3.1.  Kalinowski’s (1972), Joerden’s (1987) and Wessels’ (2002, 2004) deontic polygons 

 

The first oppositional-geometrical reform of the deontic square seems to have been that 

proposed by the Polish-French logician and philosopher Georges (Jerzy) Kalinowski, who has shown 

in 1972 (cf. Kalinowski [1972] and [1996]) that Sesmat’s and Blanché’s logical hexagon (cf. supra) 

can be applied perfectly to deontic logic (which Kalinowski developed independently from G.H. von 

Wright). This gives a “hexagon of norms” (cf. fig. 11). This conservative extension of the deontic 

square is fine but, as we now know (cf. supra), it is not geometrically exhaustive of standard deontic 

logic, for the geometry of the latter is not 2-dimensional, but 5-dimensional. In particular, as we 

just saw, Kalinowski’s deontic hexagon does not take into account the very important deontic “null 

modalities”, namely “p” and “p”, that is: “p is real”, “p is not real” (cf. fig. 11). 
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In this respect Kalinowski’s deontic hexagon is only a fine fragment of the whole standard deontic 

geometry (in Pellissierian terms it is the tripartition “12|36|45” of E). 

A second interesting proposal has been made in 1987 by the German lawman and logician Jan 

C. Joerden (in a joint paper with J. Hruschka, cf. Hruschka and Joerden [1987]; cf. also Joerden 

[2012]), while trying to express logically the subtle, philosophically very important concept of 

“supererogation”: “doing more (good) than it is demanded (as a minimum)” (cf. fig. 12). 

 

Another interesting proposal, also aiming at formalising logically “supererogation”, has been 

done more recently by the German philosopher and logician Ulla Wessels (cf. Wessels [2002] and 

[2004]) (cf. fig. 13). 

 

We will not analyse here these proposals (it would be interesting to do it elsewhere). Let us 

turn instead toward a fourth, very interesting geometrisation of deontic logic, one which in some sense 

has become standard for expressing supererogation. 

 

3.2.  McNamara’s attempts to think geometrically deontic logic beyond the deontic square: his 

deontic hexagon, dodecagon and octodecagon (1996) 

 

Another author has tried to go beyond the classic deontic square. By a reasoning seemingly 

independent from Jacoby’s, Sesmat’s and Blanché’s logical hexagon (and a fortiori from Kalinowski’s 

hexagon of norms), the American philosopher and logician Paul McNamara has proposed a “deontic 

hexagon” (cf. McNamara [2006]). As we show in another place (cf. Moretti [2014?]), this structure, 

which is not a logical bi-simplex, and which seemingly is rather different from Kalinowski’s “hexagon 
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of norms”, is both redundant (for its vertices “OPp” and “OPp” are in fact the same, as recognises 

McNamara himself) and incomplete, for “OPp” has not its contradictory term, “OPp”, on the 

polygon (cf. fig. 14 and 15). 

 

Now, after eliminating from it the oversight of OPp (cf. fig. 15, the two structures in the 

middle), we get a logical bi-simplex (of dimension 2) which is nothing less (and nothing more) than 

the real “deontic hexagon”, strictly equivalent to Kalinowski’s one (cf. fig. 15, fourth structure on the 

right)
12

. 

 

But the point we want to concentrate on in our paper is rather the following. In 1996, while developing 

a very interesting “logic of common-sense morality” (cf. McNamara [1996a] and McNamara [1996b]), 

an enriched version of deontic logic (obtained, essentially, by building a coherent framework for the 

modality “supererogation”), McNamara proposed two new graphs (two new “deontic polygons”). In 

the rest of this paper we study the first of them, the so-called “deontic dodecagon” (cf. fig 16)
13

. 

                                                             
12 One only has to rotate it properly (i.e. anticlockwise) of 90° and then to take the vertical mirror image (i.e. 

exchanging left with right) in order to get back Kalinowski’s deontic hexagon (graphical exercise left to the 
reader!). 
13 The second one, the “deontic octodecagon”, is shown in figure 27 infra. 
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In what follows, and similarly with what we saw for his mistaken “deontic hexagon”, we will show 

that, despite the intrinsic great philosophical interest (and full logical correction, cf. Mares and 

McNamara [1997]) of McNamara’s deontic-ethical system DWE (meaning “Doing Well Enough”), 

one of its two geometrical expressions (the deontic dodecagon), which is neither a logical bi-simplex 

(an n-structure) nor a gathering of logical bi-simplexes (a n-structure, i.e. an oppositional closure), 

suffers both of redundancies and of oversights, so that one can and must correct it accordingly. This 

gives, once all the redundant terms are eliminated, once the omitted terms are added and once the 

vertices are duly rearranged in space (guided by the rule of the central symmetry of the 

contradictories), a quite complex, but elegant and interesting solid (not a polygon) much more regular 

than the starting one, coherent with oppositional geometry (if not yet exhaustive), which shows that 

McNamara’s philosophical interesting analysis is also geometrically viable (in the sense of 

oppositional geometry). 

 

4. Correcting McNamara’s “deontic dodecagon” 

 

In this section we want to go beyond McNamara’s geometrisation of his own deontic-modal 

ideas, in order to show that the latter deserve a better geometrical-oppositional representation. In order 

to do this the first task consists in revealing the possible mistakes contained in his deontic dodecagon. 

Only thereafter it will be possible to get near to a better solution, fully compatible with oppositional 

geometry. 

 

4.1. Redundancies and oversights with respect to NOT 

 

If, as we have seen, the examination of McNamara’s hexagon suggests to be careful (for he 

had to work without the help of oppositional geometry, which didn’t exist by that time), a direct 

examination of the deontic dodecagon confirms such methodological doubts: there are at least four 

reasons, from the point of view of oppositional geometry, to be dissatisfied with the dodecagon. 
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First, some terms are present two times in the structure. These are: INp (for it is logically 

equivalent to INp, already present in the deontic dodecagon), SIp (for it is logically equivalent to 

SIp, already present in the dodecagon), OPp (for it is logically equivalent to OPp, already present)
14

. 

These are undue geometrical redundancies. 

 Second, eight relations, among all the possible oppositional ones between the 12 

vertices of the dodecagon, are undefined: the PEp----SIp, SIp----GRp, GRp----SIp, SIp----PEp and 

the OPp----SIp, SIp----OPp, OPp----SIp, SIp----OPp (cf. fig. 17). 

 

Now, this omission is neither necessary nor tolerable: this dodecagon is supposed to be an 

oppositional-geometric figure, and in each oppositional-geometric figure (so teaches us oppositional 

geometry, following Aristotle and Sesmat-Blanché) each point is related to any other point by some 

kind of opposition relation (among Aristotle’s four possible ones). So, if the deontic dodecagon is to 

represent something (i.e. if McNamara’s analyses are to be taken seriously – as they clearly are), these 

missing relations must in fact exist somewhere (it must be possible to complete this drawing within 

this respect). 

Thirdly, a second kind of omission, not of relations but of terms (i.e. vertices) this time, is 

present in the structure. For three terms (three contradictory negations) are clearly missing: the OPp, 

SUp and SUp, exactly (contradictory of the OPp, SUp and SUp respectively). 

Fourthly and finally, some couples of contradictory terms (vertices), although both (the term 

and its contradiction) present in the figure, are not two by two centrally symmetric (the one with 

respect to the other): this is the case of the INp and SIp (the red contradiction relation uniting them is 

not one of the diagonals of the dodecagon, as it should be according to oppositional geometry). 

The deontic dodecagon is thus clearly inadequate in order to be an oppositional geometrical-

logical structure, it has to be corrected, McNamara’s philosophical and logical very interesting ideas 

deserve another, better geometrical representation. 

 

                                                             
14 This results from McNamara’s own axioms: ION, IIN and by the definition of SI. 
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4.2. Eliminating the redundancies in the deontic dodecagon 

 

The starting deontic dodecagon is a complex structure, with very few regularities if we except 

a left-right symmetry. In fact, if we eliminate the three redundant terms (i.e. SIp, OPp and INp), 

the structure becomes clearer, if not yet richer of symmetries (cf. fig. 18). 

 

As we did it previously with McNamara’s deontic hexagon, we need here to go further, in the hope of 

reaching finally an oppositional polygon or (hyper-)solid faithful to McNamara’s ideas and acceptable 

from the point of view of oppositional geometry. 

 

4.3. Eliminating the oversights in the deontic dodecagon 

 

So, we need now to restore the forgotten elements, that is three missing contradictory 

negations: SUp, SUp and OPp; and we need to determine the kind of opposition embodied by 

each of the 8 aforementioned missing relations (fig. 17 supra). But before adding them it is useful to 

modify slightly (by harmless permutations of the vertices) the so far reduced dodecagon (cf. fig. 19, 

left side)
15

. If we make momentarily abstraction of the arrows, this gives finally the following 

rearrangement where two logical bi-simplexes, absent in McNamara’s analysis, do appear (cf. fig. 19, 

right side). 

                                                             
15 The contradictory negation of SUp should be, geometrically speaking (i.e. for reasons of central symmetry of 
the contradictories) in the place actually occupied by OPp: where to place this one, then? Because in any case we 

must restore the central symmetry of INp and SIp (which are mutually contradictory) we will move SIp at the top 

place left empty by the elimination of the redundant SIp: accordingly, we will place its contradictory, INp, at 
the bottom place. So that now we can move OPp at the left side place: then the natural place for its contradictory 

will be the right side place, left empty by the elimination of the redundant term INp. All this leaves us free, 

now, to put the last missing terms, SUp and SUp, exactly in the places centrally symmetric to those of their 

respective contradictory terms, namely SUp and SUp (cf. fig. 19, left side). 
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4.4. Interpreting rightly the figure thus obtained 

 

This figure, once the arrows restituted (with respect to the central and right parts of fig. 19), is 

better than the original one, for it respects the geometrical laws of opposition: (1) there is a central 

symmetry with respect to contradiction; (2) all contradictory terms are drawn (there are no oversights); 

(3) there are no redundancies. As we can see, it is constituted of two n-structures: an oppositional bi-

simplex of dimension 4 and an oppositional bi-simplex of dimension 2 (cf. fig. 20). 

 

If we superpose these two components (under their previous representation of fig. 19, but representing 

this time also all the known arrows) we get some kind of “new McNamarian NOT-dodecagon” (cf. 

right side of fig. 21). 
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This figure turns out to be useful, for it shows that so far this (new) polygon is still not complete from 

the point of view of NOT. As it happens, a close examination shows that some of its relations are still 

undetermined (cf. the right side of fig 22, in violet). 

 

In particular, among the 12 violet now missing relations we see that one (the “OPp---SIp”) had been 

missing since the beginning (this is the orange one in the next figure 23, undefined in the original 

deontic dodecagon of figure 17). The remaining 8 violet relations of figure 23 are new: for they 

concern logical modalities (like “OPp” or “SUp”) which were absent in the starting dodecagon. 

On the contrary, some of the now missing opposition relations (of figure 22) were already present (i.e. 

specified) before (cf. fig. 16 supra): this is notably the case with the three implications SUpOPp, 

SUpOPp and INpOPp (depicted in grey at the right side of fig. 23). 

 

But in fact, taking these three implication arrows (cf. fig. 23) into account, one can easily see (simply 

by contraposition, i.e. by considering the three new implications OPpSUp, OPpSUp and 

OPpINp respectively) that each of them generates a new logical (deontic) square (cf. fig. 24). 
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Then, it is easy to see that these three terms contrary to OPp (i.e. the INp, SUp and SUp), being 

also mutually contrary (cf. left side of fig. 21 supra), form with OPp a blue tetrahedron of 

contrariety, whereas their 4 contradictory negations (i.e. OPp, SIp, SUp and SUp) form dually a 

green tetrahedron of subcontrariety. So, by virtue of NOT’s theory of the oppositional bi-simplexes, 

the whole of these 8 points, shaping a bi-tetrahedron, lets emerge a logical (deontic) cube (cf. fig. 25). 

 

But all this represents a big change: for one can check now that all the 9 previously unidentified violet 

and/or orange opposition relations (cf. fig. 23, right side) are present and thus well identified through 

this new “crypto-McNamarian” deontic cube (cf. fig. 25), which means that this time we have, for the 

12 vertices we are speaking of, a complete oppositional-geometrical knowledge of all their possible 

opposition relations. 

So, what we can and must say finally is that McNamara’s “deontic dodecagon” is in fact a 

complex deontic hyper-solid (not a polygon) made of a disguised entanglement of three logical bi-

simplexes (of dimension 4, 3 and 2 respectively). The final mixed structure is formed of an 5-

structure plus an 4-structure and an 3-structure, the three being partially interlaced (cf. fig. 26). 
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This situation is not new to NOT (cf. Moretti [2009 PhD]), except that inside this conceptual 

framework such a layout (i.e. a small and incomplete amount of entangled oppositional bi-simplexes) 

can only be observed relatively to fragments of known bigger structures. This suggests, then, that this 

mixed structure is a fragment of a bigger one, one being perfectly symmetrical, i.e. one respecting the 

format of oppositional geometry. Put in another way, NOT tells us that here some terms must actually 

be still invisible (the underlying oppositions cannot be expressed as they are). Remark that this is 

coherent with our knowledge of the fact that the oppositional geometry of standard deontic logic is 

summarised by the 5-dimensional 5-structure (cf. Moretti [2009]): so its conservative extensions (as 

the ones McNamara proposes here) cannot be expressed by spaces geometrical smaller than this. And, 

as it happens, McNamara’s own axiomatisation itself tells already that the logic corresponding to his 

deontic dodecagon can (and must) be expanded so to have, logically, a more powerful “deontic 

octodecagon” (cf. fig. 27). 

 

For doing this, new modalities representing further deontic-ethical notions are added (refining the 

conceptual framework of the notion of “supererogation”), in a way such that some of the previous 

modalities become now derivable from compositions of some of the new ones (conceived as more 

basic). As an example, McNamara introduces the new modal operators PSp, MIp, MAp (but not their 

negations, so he introduces, again, oversights in his “polygon”) and he defines
16

: SUp  PEp  MIp. 

Examining this, the aim of NOT will be to determine the general “crypto-McNamarian” modal graph 

of DWE, individuating the general n-structure corresponding to DWE (with, presumably, n>5). But 

the case of this McNamarian “deontic octodecagon” remains to be studied in another paper. 

 

5. Towards the McNamarian deontic n-structure 

 

Summing up, the real geometrical expression of the first half of McNamara’s deontic ideas 

(internalising supererogation) is not a 2-dimensional polygon (a dodecagon), but a hyper-solid made of 

a 4-dimensional 5-structure (a deontic bi-simplex of dimension 4) intertangled with a 3-dimensional 

                                                             
16 For the reading of such new modalities, cf. the table in figure 16. 
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4-structure (a deontic cube) and a 2-dimensional 3-structure (a deontic hexagon). In order to have 

the final word of this interesting story we will have to go further and face an examination, similar to 

the one we developed here, of McNamara’s deontic ideas on supererogation, correcting it and showing 

which oppositional solid, more than 5-dimensional and containing the three logical bi-simplexes we 

found here, is at stake finally
17

. 
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