DINÂMICA POPULACIONAL, DENSIDADE E BIOMASSA DA ICTIOFAUNA DA FOZ DO ARROIO FELIZARDO, BACIA DO RIO URUGUAI MÉDIO, URUGUAIANA, RS

Edward PESSANO¹; Claudia AZEVEDO¹; Diego TOMASSONI¹; Marcus V. QUEROL¹ & Enrique QUEROL¹

¹Núcleo de pesquisas ictiológicas, Limnológicas e Aqüicultura da Bacia do Rio Uruguai (NUPILABRU) – Museu de Ciências Naturais da PUCRS – Campus Uruguaiana. BR 472 – Km 07- E-mail edwardpessano@bol.com.br

RESUMEN - La investigación determinó estacionalmente, las especies de peces que ocurren en la desembocadura del arroyo Felizardo, en la municipalidad de Uruguaiana, Rio Grande do Sul, determinando la densidad y biomasa de sus poblaciones. La captura de los especimenes, fue efectuada mediante el empleo de la pesca eléctrica, con tres esfuerzos consecutivos, y cuantificados con el auxilio del método de ZIPPIN (ZIPPIN, 1958). Fueron capturadas 30 especies, pertenecientes a 12 familias. La familia CHARACIDAE presento mayor diversidad, con 9 especies capturadas y las familias ERYTHRINIDAE, CRENUCHIDAE, HYPOPOMIDAE, ASPRENIDAE, POOECILIIDAE y SYNBRANCHIDAE, presentaron la menor diversidad, con apenas una única especie capturada. Los datos demostraron, una diversidad semejante con relación a otros arroyos de la región, pues, para el arroyo Imbaá, son registradas 27 especies, distribuidas en 11 familias y para el arroyo Salso, son señaladas 26 especies distribuidas en 10 familias.

Palabras clave: Ictiofauna, Arroio Felizardo, técnica da pesca eléctrica, Uruguaiana.

RESUMO: O trabalho identificou sazonalmente, as espécies de peixes que ocorrem na foz do arroio Felizardo, no município de Uruguaiana, Rio Grande do Sul, determinando a densidade e biomassa de suas populações. A captura dos espécimes foi efetuada mediante a técnica da pesca elétrica, com três esforços consecutivos, e quantificados com auxílio do método de ZIPPIN. Foram capturadas 30 espécies, pertencentes a 12 famílias. A família CHARACIDAE apresentou maior diversidade, com 9 espécies capturadas e as famílias ASPREDINIDAE, CRENUCHIDAE, ERYTHRINIDAE, HYPOPOMIDAE, POECILIIDAEE SYNBRANCHIDAE, apresentaram a menor diversidade, com apenas uma única espécie capturada. Os dados demonstram uma diversidade semelhante em relação a outros arroios da região, pois, para o arroio Imbaá, são registradas 27 espécies, distribuídas em 11 famílias e para o arroio Salso, são registradas 26 espécies distribuídas em 10 famílias.

Palavras - chave: Ictiofauna, Arroio Felizardo, técnica da pesca elétrica, Uruguaiana.

INTRODUÇÃO

A importância de ecossistemas aquáticos, como os pequenos cursos d'água, por constituírem áreas de criação, alimentação

e refúgio de peixes é citada e destacada por (HOOK 1991), muitas espécies de peixes utilizam estes locais para realizarem seu ciclo de vida, outro fator é sua grande importância ecológica por serem ambientes onde os

indivíduos funcionam como transferidores de energia.

Estudos que enfocam a estrutura das diferentes comunidades de peixes de sistemas aquáticos continentais da América do Sul são raros, com exceção para os trabalhos realizados no Rio Grande do Sul, Brasil, pois MALABARBA (1989) efetuou uma revisão das espécies ícticas para as bacias da lagoa dos Patos, lagoa Mirim e rio Jacuí, com 106 espécies de água doce listadas e os estudos realizados no Sistema hidrográfico do rio Uruguai superior, por BERTOLETTI et al. (1989), acusaram a ocorrência de 74 espécies. Por outro lado, os estudos referidos para ictiofauna na região de Uruguaiana, Fronteira Oeste do Rio Grande do Sul, são escassos. Deste ponto de vista, os afluentes do sistema do Rio Uruguai médio, como arroios e riachos, apresentam-se como uma fonte pouco explorada, em relação a suas populações ícticas; desta forma, este trabalho pretende contribuir para o conhecimento da ictiofauna do arroio Felizardo, nas diferentes estações do ano, além de determinar a sua densidade e biomassa.

MATERIAL E MÉTODOS

Os peixes foram coletados na foz do arroio Felizardo localizado à 29° 50' 19'' S e 57° 05' 03'' W, bacia do Rio Uruguai médio, no município de Uruguaiana, Rio Grande do Sul, na Br 472 Km 07. Este córrego tem comunicação direta com o Rio Uruguai, desembocando inicialmente no Arroio Itapitocai.

A técnica de captura utilizada foi a pesca elétrica (LOBÓN-CERVIÁ 1991), constituída por um gerador elétrico modelo "Corujinha" de 1500W, operativo a 230 V, com corrente alternada e amperagem máxima de 6 Ampères e puçás de captura.

As coletas foram realizadas sazonalmente, caracterizando as quatro estações do ano. O trabalho de coleta teve início, em julho de 2001, prolongando-se até maio de 2002, abrangendo um ciclo estacional completo.

Para estimativas quantitativas foi aplicado o Método de Zippin, (ZIPPIN, 1958) com sua variante de três esforços de captura, com o qual obteve-se dados sobre o número de indivíduos capturados (N) e número de indivíduos estimados (NE), dados estes com intervalo de confiança a 95%. Estes esforços foram exercidos de forma constante nos períodos de execução das pescas sucessivas, conforme QUEROL (1997).

Os dados da captura (N) foram utilizados para estimar o número de peixes da população.

Em cada estimativa, o número de peixes estimados foi (NE), e o número de peixes capturados (N).

O *standing crop* entende-se como o peso fresco, de forma que:

Sc = NE * P/N

Onde Sc, é o *standing crop;* NE, o número estimado de indivíduos; P, o peso fresco total das capturas; N, o número total de indivíduos capturados.

Da mesma forma, a biomassa e a densidade foram determinadas mediante QUEROL, (1997), onde:

B = Sc * 10.000/A

Onde B é a biomassa; Sc é o *standing crop* e A, a área.

D = NE * 10.000/A

Onde D é a densidade; NE o número de indivíduos capturados.

Para verificar a freqüência de ocorrência das espécies, ao longo dos períodos estacionais, foi utilizado um método adaptado de BERTOLETTI *et al.* (1989), referente à coleta das espécies durante os três esforços de captura, sendo considerada constante quando capturada, nos três esforços, acessória, quando capturada em dois esforços e acidental, quando capturada em apenas um esforço.

Durante as coletas, foram efetuados analises dos parâmetros físico-químicos da água com o auxilio do Kit de análises Alfa Tecnoquímica, dos seguintes parâmetros: Amônia (N-NH₃); Potencial Hidrogeniônico (pH); Oxigênio dissolvido (O₂) ppm; Nitrito (N-NO₂); Temperatura (C°) e Condutividade (Us).

Os peixes coletados foram depositados na coleção científica do NUPILABRU (Núcleo

de Pesquisas Ictiológicas, Limnológicas e Aqüicultura da Bacia do Rio Uruguai) da PUCRS – Câmpus Uruguaiana.

RESULTADOS E DISCUSSÃO

Foram capturados um total de 2113 indivíduos, pertencentes a 30 espécies, distribuídas em 12 famílias (Tab. I).

A família CHARACIDAE apresentou a maior diversidade, com nove espécies capturadas e as famílias ASPREDINIDAE, CRENUCHIDAE, ERYTHRINIDAE, HYPOPOMIDAE, POECILIIDAE e SYNBRANCHIDAE apresentaram a menor diversidade, com apenas uma única espécie capturada (Tab. II).

O maior número de exemplares capturados foi de 705 indivíduos na estação de verão, a contrário de BEHR e BALDISSEROTTO (1994) que estudando o rio Vacacaí-Mirim na região de Santa Maria, RS, determinou uma maior captura no inverno.

No período de inverno, a espécie Macropsobrycon uruguayanae EIGENMANN, 1915 apresentou a maior densidade, com 1976 ind./ha e a espécie que demonstrou a maior biomassa foi Hoplias malabaricus (BLOCH, 1794) com 14.399,6 g/ha, enquanto que as Loricariichthys espécies platymetopom NIJSSEN. (ISBRUCKER & 1979) Otocinclus flexilis (COPE, 1894) apresentaram a menor densidade, com 16 ind./ha e a espécie Bunocephalus doriae (BOULENGER, 1902) a menor biomassa, com 12,1 g/ha (Tabs. III e IV).

Durante o período de primavera, a maior densidade pertenceu a espécie Astyanax bimaculatus (LINNAEUS, 1758) com 888 ind./ha e a maior biomassa para a espécie Crenicichla lepidota HECKEL, 1840, com 7.466,8 g/ha, enquanto que as espécies Acestrorhynchus altus MENEZES Loricariichthys anus (VALENCIENNES. 1840), Pseudocorynopoma doriae PERUGIA, e Rhamdia quelen (QUOY GAIMARD, 1824) apresentaram a menor densidade, com 17 ind./ha e a espécie Cnesterodon decenmaculatus (JENYNS, 1842)

a menor biomassa com 4,1 g/ha (Tabs. III e IV).

Na estação de verão, a espécie *Astyanax bimaculatus*, apresentou a maior densidade com 2.782 ind./ha e a maior biomassa com 13.941,5 g/ha, enquanto que as espécies *Loricariichthys platymetopom* e *Rhamdia quelen* apresentaram a menor densidade, com 19 ind./ha e a espécie *Loricariichthys platymetopom* a menor biomassa com 1,4 g/ha (Tabs, III e IV).

Durante a estação de outono, a maior densidade pertenceu espécie à Macropsobrycon uruguayanae EIGENMANN, 1915 com 4.093 ind./ha e a espécie com a maior biomassa foi Astyanax bimaculatus com 17.541,8 g/ha, enquanto que a espécie Rhamdia quelen, apresentou a menor densidade, com 22 ind./ha e a espécie Cnesterodon decenmaculatus (JENYNS, 1842) a menor biomassa com 83,6 g/ha (Tabs. III e IV).

As espécies *Astyanax bimaculatus* e *Cheirodon interruptus* (JENYNS, 1842), foram capturadas nas quatro estações, durantes todas as pescas.

De acordo com a classificação de BERTOLETTI *et al.* (1989), referente à constância das espécies, pode-se agrupar as espécies capturadas em 12 espécies constantes, 8 espécies acessórias e 4 espécies acidentais no inverno, 10 espécies constantes, 10 espécies acessórias e 6 espécies acidentais na primavera, 8 espécies constantes, 11 espécies acessórias e 5 espécies acidentais no verão e 12 espécies constantes, 5 espécies acessórias e 4 espécies acidentais no outono. Para a Foz do arroio podemos considerar 17 espécies constantes, 9 espécies acessórias e 4 espécies acidentais (Tab. V).

Os resultados das análises dos parâmetros físico-químicos da água durante os períodos de coletas podem ser observados na Tabela VI.

CONCLUSÕES

Os resultados demonstram que a diversidade específica apresentou diferenças nas quatro estações do ano. No outono foram capturadas 21 espécies; no inverno e verão

foram capturadas 24 espécies, embora com diferenças na composição específica, enquanto na primavera se obteve a maior diversidade com 26 espécies capturadas.

Os dados obtidos para a foz do arroio Felizardo demonstram maior diversidade íctica, em relação a outros arroios estudados na região. Para o Arroio Imbaá, por exemplo, foram encontradas 27 espécies distribuídas em 11 famílias (SAUCEDO, 2001) e para o Arroio Salso, foram determinadas 26 espécies distribuídas em 10 famílias (MANSILHA, 1998).

AGRADECIMENTOS

Os autores agradecem ao Professor Dr. Édison V. Oliveira e Dr. Carlos Lucena, pelas colaborações sugestões e identificação das espécies, que enriqueceram este trabalho. Ao senhor Julio (tratorista da PUCRS Uruguaiana), pela incansável compreensão e auxilio, nos transportes para as coletas.

REFERÊNCIAS BIBLIOGRÁFICAS

- BEHR, E. R.; BALDISSEROTTO, B. 1994. Comparação da Ictiofauna de três locais do Rio Vacacaí-Mirim, Rio Grande do Sul. Comunicações do Museu de Ciências da PUCRS, Porto Alegre, (7): 167 – 178.
- BERTOLETTI, J. J.; LUCENA, C. A. S.; LUCENA, Z. M. S.; MALABARBA, L. R. & REIS, R.E. 1989. Ictiofauna do rio Uruguai superior entre os municípios de Aratiba e Esmeralda, Rio Grande do Sul, Brasil. Comunicações do Museu de Ciências da PUCRS. Porto Alegre, (48): 3 – 42.

- HOOK, J.H. 1991. Seasonal variation in the relative abundance and species diversity of fishes in South Bay. **Contr. Mar. Sci.** 32:.02. p127 141.
- LOBÓN-CERVIÁ, J., Dinámica de Poblaciones de pesces. Pesca Elétrica y los métodos de capturas Sucesivas en la Estima de Abundanciadas. Monografia del Museo Nacional de Ciências Naturales. 1991. 191p
- MALABARBA, LR. 1989. Histórico sistemático e lista comentada das espécies de peixes de água doce do Sistema da Laguna dos Patos, Rio Grande do Sul, Brasil. Comunicações do Museu de Ciências da PUCRS, Série Zoologia, Porto Alegre, 2 (8): p107-179.
- MANSILHA, L. V. Q. Diversidade Específica e Estimativa da Densidade e Biomassa da Ictiofauna do Arroio Salso de Baixo, na Região de Uruguaiana, Bacia do Rio Uruguai, RS, Brasil. Monografia de Conclusão da PUCRS Campus de Uruguaiana. 34p. 1998.
- QUEROL, E; QUEROL, M. V. M; CERVIA, J. L. 1997. Estimativa da Densidade e Biomassa da População de *Cichlasoma portalegrense* (HENSEL, 1870) (PISCES, CICHLIDAE) Através do Método de três Capturas Sucessivas com Pesca Elétrica em um Arroio do Pampa Brasileiro. *Comunicações do Museu de Ciências da PUC-RS*, Série Zoologia, Porto Alegre, 10 : p13-25.
- SAUCEDO, L. S. Dinâmica das Populações Ícticas do arroio Imbaá (nascente), Bacia do Rio Uruguai médio, Uruguaiana, RS, Brasil. Uruguaiana. Monografia de Graduação do Curso de Ciências Biológicas. Pontifícia Universidade Católica do Rio Grande do Sul. 2001. 41p.
- ZIPPIN, C. The removal method of population estimation. **Journal of Wildlife Management**, 22:01.1958.p.82-90.

Tabela I – Número de exemplares capturados, espécies e famílias, nas quatro estações do ano, na Foz do arroio Felizardo.

	INVERNO	PRIMAVERA	VERÃO	OUTONO	TOTAL
EXEMPLARES	488	350	705	570	2.113
ESPÉCIES	24	26	24	21	30
FAMILIAS	11	11	9	8	12

Tabela II – Famílias e espécies capturadas na foz do arroio Felizardo, durante um ciclo sazonal completo.

FAMILIAS	ESPÉCIES				
ASPREDINIDAE	Bunocephalus doriae (Boulenger, 1902)				
CALLICHTHYIDAE	Corydoras aeneus (Gill, 1858)				
	Corydoras paleatus (Jenyns, 1842)				
CICHLIDAE	Geophagus brasiliensis (Quoy & Gaimard, 1824)				
	Crenicichla lepidota Heckel, 1840				
	Cichlasoma portalegrense (Hensel, 1870)				
	Gymnogeophagus balzanii (Perugia, 1891)				
	Gymnogeophagus meridionalis Reis & Malabarba, 1988				
CHARACIDAE	Acestrorhynchus altus (Menezes 1969)				
	Aphyocharax anisitsi Eigenmann & Kennedi, 1903				
	Astyanax bimaculatus (Linnaeus, 1758)				
	Astyanax fasciatus (Cuvier, 1819)				
	Charax stenopterus (Cope, 1894)				
	Cheirodon interruptus (Jenyns, 1842)				
	Hyphessobrycon meridionalis Ringuelet, Miquelarena & Menni, 1978				
	Macropsobrycon uruguayanae Eigenmann, 1915				
	Pseudocorynopoma doriae Perugia, 1891				
CURIMATIDAE	Cyphocharax spilotus Vari, 1987				
	Cyphocharax voga (Hensel, 1870)				
	Steindachnerina biornata (Braga & Azpelicueta, 1987)				
CRENUCHIDAE	Characidium pterostictum Gomes, 1947				
ERYTHRINIDAE	Hoplias malabaricus (Bloch, 1794)				
HYPOPOMIDAE	Otocinclus flexilis (Cope, 1894)				
LORICARIIDAE	Hypostomus commersoni Valenciennes, 1836				
	Loricariichthys anus (Valenciennes, 1840)				
	Loricariichthys platymetopon (Isbrucker y Nijssen, 1979)				
PIMELODIDAE	Pimelodella laticeps (Eigenmann, 1917)				
	Rhamdia quelen (Quoy y Gaimard, 1824)				
POECILIIDAE	Cnesterodon decemmaculatus (Jenyns, 1842)				
SYNBRANCHIDAE	Synbranchus marmoratus Bloch, 1795				

Tabela III – Número de indivíduos capturados (N) e estimados (NE) das espécies capturadas, durante as quatro estações do ano, na Foz do arroio Felizardo.

ESPÉCIES	IN	IV	P	RI	V	ER	OUT	
	N	NE	N	NE	N	NE	N	NE
Acestrorhynchus altus	13	13	1	1	-	-	-	-
Aphyocharax anisitsi	2	2	19	29	13	13	30	33
Astyanax bimaculatus	56	57	51	51	138	140	138	143
Astyanax fasciatus	38	38	15	15	77	79	58	84
Bunocephalus doriae	2	2	2	2	_	-	-	-
Charax stenopterus	4	4	-	-	2	2	10	25
Characidium pterostictum	26	33	30	31	31	32	8	8
Cheirodon interruptus	10	25	12	13	26	28	26	38
Crenicichla lepidota	15	17	16	19	17	17	16	16
Cichlasoma portalegrense	8	9	5	5	9	10	3	3
Cnesterodon								
decenmaculatus	28	32	5	5	12	12	25	29
Corydoras aeneus	-	-	-	-	5	5	-	-
Corydoras paleatus	5	5	7	7	17	17	-	-
Cyphocharax spilotus	14	15	15	15	39	39	-	-
Cyphocharax voga	23	23	24	24	28	28	4	4
Geophagus brasiliensis	3	3	9	13	11	11	14	15
Gymnogeophagus balzanii	60	65	27	31	13	13	18	18
Gymnogeophagus								
meridionalis	8	8	7	7	8	8	8	8
Hiphessobrycon								
meridionalis	28	31	22	25	66	66	44	54
Hoplias malabaricus	5	5	2	2	4	4	4	5
Hypostomus commersoni	-	-	2	2	-	-	2	2
Loricariichthys			-	-				
platymetopom	1	1			1	1	2	2
Loricariichthys anus	-	-	1	1	-	-	-	-
Macropsobrycon								
uruguayanae	115	119	45	45	102	102	148	186
Otocinclus flexilis	1	1	-	-	-	-	-	-
Pimelodella laticeps	10	10	7	7	14	14	6	6
Pseudocorynopoma doriae	-	-	1	1	18	18	-	-
Rhamdia quelen	-	-	1	1	1	1	1	1
Stein dachnerina biornata	13	13	22	22	53	53	5	5
Synbranchus marmoratus	-	-	2	2	-	-	-	-
TOTAL	488	531	350	376	705	713	570	685

INV= Inverno; PRI= Primavera; VER= Verão e OUT= Outono

Tabela IV – Biomassa (B, g/ha) e densidade (D, Ind./ha), das espécies capturadas, durante as quatro estações do ano, na Foz do arroio Felizardo.

ESPÉCIES	INV	7	PF	RI	VE	R	OUT	
	В	D	В	D	В	D	В	D
Acestrorhynchus altus	81,3	215	228,2	17	-	-	-	-
Aphyocharax anisitsi	277,3	33	275,2	505	123,2	258	165	726
Astyanax bimaculatus	6289,6	946	3181,1	888	13941,5	2782	17541,8	3147
Astyanax fasciatus	1733,9	631	973,8	261	2506,4	1530	3303,2	1848
Bunocephalus doriae	12,1	33	8,7	34	-	-	-	-
Charax stenopterus	190,9	66	-	-	64,7	39	1555,8	550
Characidium pterostictum	318,8	548	353,6	540	719,5	636	162,8	176
Cheirodon interruptus	166	415	142,8	226	520,7	556	935,2	836
Crenicichla lepidota	2816,8	282	7466,8	331	4975,1	337	1516,2	352
Cichlasoma portalegrense	2262	149	1898,9	87	4446,4	198	1723,1	66
Cnesterodon decenmaculatus	86,3	531	4,1	87	13,3	238	83,6	638
Corydoras aeneus	-	-	-	-	266,8	99	-	-
Corydoras paleatus	158,7	83	224,7	121	647,9	337	-	-
Cyphocharax spilotus	1664,1	249	2700,3	261	3468,4	775	-	-
Cyphocharax voga	5030,7	381	3426,8	418	5706,6	556	1661,5	88
Geophagus brasiliensis	465	49	1219,5	226	1258,1	218	1628,5	330
Gymnogeophagus balzanii	5721,6	1079	2818,8	540	1552,3	258	2365,7	396
Gymnogeophagus meridionalis	1160,9	132	2616,7	121	2343,4	159	2772,8	176
Hiphessobrycon meridionalis	171	514	214,2	435	1136,9	1311	605,1	1188
Hoplias malabaricus	14399,6	83	747,3	34	4740,6	79	3884,2	110
Hypostomus commersoni	-	-	5583,6	34	-	-	5554,5	44
Loricariichthys platymetopom	426,8	16	_	-	1,4	19	1441,4	44
Loricariichthys anus	-	-	137,6	17	-	-	-	-
Macropsobrycon uruguayanae	845,3	1976	54	783	876,5	1053	1335,8	4093
Otocinclus flexilis	19,9	16	-	-	-	-	-	-
Pimelodella laticeps	197,6	166	273,5	121	375,6	278	101,2	132
Pseudocorynopoma doriae	-	-	33,1	17	536,6	357	-	-
Rhamdia quelen	-	-	329,2	17	133,1	19	955,1	22
Steindachnerina biornata	2059,4	215	5729,9	383	8207,1	1053	2321,7	110
Synbranchus marmoratus	-	-	306,6	34	-	-	-	-
TOTAL	46555,6	8808	40949	6538	58562,1	13145	74935	15072

INV= Inverno; PRI= Primavera; VER= Verão e OUT= Outono.

Tabela V — Constância de captura das espécies, nas diferentes estações, na Foz do arroio Felizardo. Constante (A), acessória (B) e acidental (C).

	INVERNO	PRIMAVERA	VERÃO	OUTONO	FOZ
Acestrorhynchus altus	В	С	-	-	В
Aphyocharax anisitsi	В	A	В	A	Α
Astyanax bimaculatus	A	A	A	A	A
Astyanax fasciatus	Α	В	A	A	A
Bunocephalus doriae	В	C	-		В
Charax stenopterus	В	-	C	A	В
Characidium pterostictum	A	A	A	В	A
Cheirodon interruptus	A	A	A	A	A
Crenicichla lepidota	A	A	В	A	A
Cichlasoma portalegrense	Α	В	A	В	A
Cnesterodon decenmaculatus	A	В	A	A	A
Corydoras aeneus	-	-	В	-	C

Corydoras paleatus	С	В	В	_	В
Cyphocharax spilotus	A	A	В	_	В
Cyphocharax voga	A	В	В	В	A
Geophagus brasiliensis	C	A	В	A	A
Gymnogeophagus balzanii	A	A	В	A	A
Gymnogeophagus					A
meridionalis	В	В	В	C	
Hiphessobrycon meridionalis	A	A	В	A	A
Hoplias malabaricus	В	В	C	A	A
Hypostomus commersoni	-	В	-	C	В
Loricariichthys	C	-	C	В	В
platymetopom					
Loricariichthys anus	-	C	-	-	C
Macropsobrycon					A
uruguayanae	A	В	A	A	
Otocinclus flexilis	C	-	-	-	C
Pimelodella laticeps	В	В	C	В	A
Pseudocorynopoma doriae	-	C	A	-	В
Rhamdia quelen	-	C	C	C	В
Steindachnerina biornata	В	A	В	C	A
Synbranchus marmoratus	-	C	-	-	C

Tabela VI - Parâmetros físico-químicos, durante as quatro estações do ano, na Foz do arroio Felizardo.

ESTAÇÃO	T ar	T água	pН	O ₂	Amônia	Nitrito	Condut.
	°C	°C		ppm	ppm	ppm	μS
INVERNO	18	16	7,0	9,5	1,0	0,025	88,2
PRIMAVERA	19	17	7,0	9,0	1,0	0,025	89,8
VERÃO	28	24	6,5	6,8	2,0	0,025	80,1
OUTONO	30	26	6,5	8,8	0,5	0,025	75,1
Média	23,7	21,5	6,7	8,5	1,1	0,025	83,3
SD	6,1	4,9	0,2	1,1	0,6	0	6,9

Tar = temperatura do ar (°C); Tágua= temperatura da água (°C); pH = Potencial hidrogeniônico;

 $\mathbf{O_2}$ = oxigênio dissolvido (ppm); **Condut.** = condutividade; \mathbf{SD} = Desvio padrão e \mathbf{mS} = Micro-semens.

Recebido: 13/08/2004.

Aceito: 03/12/2004.