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Next generation aircraft & spacecraft  
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ABSTRACT: The innovative and groundbreaking theory of “Relativistic Elasticity” is proposed 

for the design of the new generation large aircraft with turbojet engines and speeds in the range of 

50,000 km/h and for the new generation spacecraft of any speed. Such a new theory shows that 

there is a considerable difference between the absolute stress tensor and the stress tensor of the 

airframe even in the range of speeds of 50,000 km/h. For much bigger speeds of the next 

generation spacecraft, like c/3, c/2, 3c/4, or 0.80c (c=speed of light), the difference between the 

two stress tensors is very much increased The new theory of “Relativistic Elasticity” is a 

combination of the theories of "Classical Elasticity" and "Special Relativity" and results in the 

“Universal Equation of Elasticity”and in the "Universal Stress Intensity Factors". The "structural 

design" of super speed vehicles  requires the consideration of mass pulsation and energy-mass 

interaction at high velocity space-time scale, as the relative stress intensity factors are different 

than the corresponding absolute stress intensity factors.   

KEYWORDS: Relativistic Elasticity; Universal Equation of Elasticity; Fracture 

Mechanics Analysis; Relative Stress Tensor; Absolute Stress Tensor; Universal Stress 

Intensity Factors. 

 

RESUMO:  A teoria pioneira e inovadora da “Elasticidade Relativista” é proposta para o projeto 

de aeronaves de grande porte de nova geração com motores turbojato e velocidades na faixa de 

50.000 km/h e para espaçonaves de nova geração de  qualquer velocidade. Uma teoria tão nova 

demonstra que há diferença considerável entre o tensor tensão absoluto e o tensor tensão da 

fuselagem, mesmo na faixa de velocidades de 50.000 km/h. Para velocidades muito maiores de 

espaçonaves de nova geração, como  c/3, c/2, 3c/4, ou 0,80c (c=velocidade da luz), a diferença 

entre os dois tensores tensão é bastante aumentada. A nova teoria da “Elasticidade Relativista” é 

uma combinação das teorias da “Elasticidade Clássica” e “Relatividade Especial” e resulta na 

“Equação Universal da Elasticidade” e nos "Fatores de Intensidade de Tensão Universais”.  O 

“projeto estrutural” de veículos super velozes requer a consideração da pulsação da massa e  da 

interação massa-energia em uma escala espaço-tempo de alta velocidade, já que os fatores de 
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intensidade de tensão relativos são diferentes dos fatores de intensidade de tensão absolutos 

correspondentes.    

PALAVRAS-CHAVE: Elasticidade Relativista; Equação Universal da Elasticidade; Análise de 

Mecânica da Fratura; Tensor Tensão Relativo; Tensor Tensão Absoluto;  Fatores de Intensidade 

de Tensão Universais. 

 

1 Next Generation Aircraft and Spacecraft  

 

The main concern of International Aeronautical Industries is to achieve a competitive 

technological advantage in certain strategic areas of new and rapidly developing advanced 

technologies, by which in the longer terms, increased market share can be achieved. This 

considerably big market share includes the design of a new generation of large aircraft with speeds 

even in the range of 50,000 km/h. According to our research the future of such very fast aircraft is 

not very far. Thus, the application of new type of turbojet engines makes the construction of such 

type of large aircraft possible and so there is a need of new elastic stress analysis and fracture 

mechanics analysis for the construction of the total parts of such type of next generation aircraft. 

Furthermore, the current target of the International Space Agencies (ESA, NASA, etc.) is 

to achieve in the future, next generation spacecraft moving with very high speeds, even 

approaching the speed of light. How far is this future ? According to our present investigation this 

future could be much closer than everybody believes. During the next decades next generation 

spacecraft should be built if there is a desire for space exploration. In the cases of the next 

generation innovative spacecraft the relative stress tensor will be much different than the absolute 

stress tensor and so special materials should be used for the construction of such spacecraft. The 

type of the proper material for the construction of the next generation spacecraft is under 

investigation and will be very much different than the usual composite materials. Thus, a fracture 

mechanics analysis and investigation of the next generation spacecraft should be done. 

In the current research we will show that there is a significant difference between the 

absolute stress tensor and the stress tensor of the airframe even in the range of speeds of 50,000 

km/h. On the other hand, for bigger speeds the difference of the two stress tensors is very much 

increased. So, for bigger velocities like c/3, c/2, 3c/4 or 0.80c (c=speed of light) the relative stress 

tensor is very much different than the absolute one, while for velocities near the speed of light, the 

values of the relative stress tensor are much bigger than the corresponding values of the absolute 

stress tensor. The study of the connection between the stress tensors of the absolute frame and the 

airframe is included in Ref. [30] - [32] under the term “Relativistic Elasticity” and the final 

formula which results from the above theory is known as the “Universal Equation of Elasticity”. 
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Hence, in the present research the theory of “Relativistic Elasticity” will be applied for the elastic 

stress analysis design of the next generation aircraft and spacecraft. 

Furthermore, in Ref. [1]-[22] were proposed several linear singular integral equation 

methods applied to elasticity, plasticity and fracture mechanics applications. In the above studies 

the Singular Integral Operators Method (S.I.O.M.) is investigated for the numerical evaluation of 

the multidimensional singular integral equations in which is reduced the stress tensor analysis of 

the linear elastic theory. Also, the theory of linear singular integral equations was extended to non-

linear singular integral equations, too. [23]-[29]. So the theory of “Relativistic Elasticity” will be 

applied to the design of the elastic stress analysis and fracture mechanics analysis of the airframes. 

“Relativistic Elasticity” is derived as a generalization of the classical theory of elastic stress 

analysis for stationary frames. Hence, for future aerospace applications the difference between the 

relative and the absolute stress tensors will be of increasing interest. Also, the classical theory of 

elastic stress analysis began to be analyzed in the early nineteenth century and was further 

developed in the twentieth century. Over the past years were written several important monographs 

on the classical theory of elasticity. [33]-[52].  

On the other hand, during the past years special attention has been concentrated on the 

theoretical aspects of the special theory of relativity. So, some classical monographs were written, 

dealing with the theoretical foundations and investigations of the special and the general theory of 

relativity. [53]–[60]. Furthermore, a very important point which will be shown in the present 

investigation is that the "relative stress tensor is not symmetrical", while, as it is well known, the 

"absolute stress tensor is symmetrical". Such a difference is very important for the design of the 

next generation aircraft and spacecraft of very high speeds. Hence, the foundations of the theory of 

“Relativistic Elasticity” for airstructures lead to a general theory, in which no restriction is made 

with regard to the relative motion. Such a general theory is also reduced to one class of relative 

motion, uniform in direction and velocity. Furthermore, the "structural design" of super speed 

vehicles requires the consideration of mass pulsation [61], [62] and energy-mass interaction [63] at 

high velocity space-time scale.  

 

2 Airframes Relativistic Elastic Stress Analysis  

 

Consider the state of stress at a point in the stationary frame  S
0
, defined by the symmetrical 

stress tensor given by the formula: (Fig.1)  
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where:                                      0
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Furthermore, let us consider an infinitesimal face element  df  with a directed normal, 

defined by a unit vector  n,  at definite point  p  in the three-space of a Lorenz system. The matter 

on either side of this face element experiences a force which is proportional to  df. 

Hence, the force is valid as: 

 

                                                             fd)()(d nσnσ                                                            (2.3) 

Also, the components  σi(n)  of  σ(n)  are linear functions of the components  nk  of  n: 

  

                                                3,2,1,,)(  kinkiki  n                                                        (2.4) 

where by  σik  is defined the elastic stress tensor, which can be also called the relative stress tensor, 

in contrast to the space part 
0

ik   of the total energy-momentum tensor  Tik,  referred as the absolute 

stress tensor. [53], [54} (Fig. 2). 

Moreover, the connection between the absolute and relative stress tensors is defined as: 

                                         3,2,1,,0  kiug kiikik                                                (2.5) 

where  gi  are the components of the momentum density  g  and  uk  the components of the velocity  

u  of the matter. 

The connection between  g  and the energy flux  s,  is given by the relation: 

                                                                  
2csg                                                                       (2.6) 

in which  c  denotes the speed of light (= 300.000 km/sec). 

On the other hand, the total work done per unit time by elastic forces on the matter inside 

the closed surface  f  is given by the following formula: 
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where the integration in the last integral is extended over the interior  υ  of the surface f. 

Hence, the work done on an infinitesimal piece of matter of volume δυ is equal to: 
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Also, (2.8) must be equal to the increase per unit time of the energy inside δυ: 

                                                          Wh
t

 )(
d

d
                                                          (2.9) 



  Aviation in Focus (Porto Alegre), v.3, n.1, p. 118-141 – jan./jul. 2012   122 
 

in which  h denotes the total energy density, including the elastic energy and  tdd   is the 

substantial time derivative. 

Furthermore, eq. (2.9) can be written as: 
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which finally leads to the following relation: 
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So, the total energy flow is given by the formula: 

                                                               )( σuhus                                                              (2.12) 

where )( σu    denotes a space vector with components  ikik u  )( σu . 

Thus, the total momentum density can be written as: 

                                                           
22
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in which  
2ch   is the total mass density, including the mass of the elastic energy. 

From (2.5) and (2.13) one has: 

                            ikkikiik ugug 0/](([ 2  cuu ikki σ)uσ)u                   (2.14) 

which shows that the relative stress tensor is not symmetrical, in contrast to the absolute stress 

tensor (2.1) which is symmetrical. 

In the stationary frame  S
0
  the velocity  00 u   and so, from (2.5), (2.12) and (2.13) one 

obtains the following expressions: 

                             

                                                  )3,2,1,(00  kikikiikik                                              (2.15) 

Moreover, the mechanical energy-momentum tensor satisfies the following formula: 

                                                                  ikik UhUT 0                                                          (2.16) 

where  Ui  denotes the four-velocity of the matter, in the Lorentz system and  ),0,0,0(0 icU i  . 

So, the following scalar can be formed: 

                                        )( 1
00

44
20002 xhTcUTUcUTU kikikiki                                       (2.17) 

with  )( 1
0 xh  the invariant rest energy density considered as a scalar function of the coordinates  

(xi) (i = 1,2,3)  in  S.  (Fig. 2) 

Beyond the above, by applying the tensor: 

                                            
2cUU kiikik                                                    (2.18) 

which satisfies the relations: 
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                                                        0 kikiki UU                                                         (2.19) 

then, the following symmetrical tensor can be formed: 

                                                       kimkmiik STS   11                                                         (2.20) 

which is orthogonal to  Ui: 

                                                          0 kikiki USSU                                                           (2.21) 

By combining eqs. (2.16), (2.17) and (2.20) we have: 

                                                        20 cUUhTS kiikik                                                      (2.22) 

Also, in the stationary system  S0  one obtains: 

                                                   0, 0
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Eq. (2.22) can be further written as: 

                                                             ikikik ST                                                                (2.24) 

where: 

                                     kikiik UUcUUh 020                                             (2.25) 

is the kinetic energy-momentum tensor for an elastic body and: 

                                                              
200 ch                                                        (2.26) 

is the proper mass density. 

Furthermore, let us introduce in every system  S  the quantity: 

                                                  44 UUSS kiikik                                                     (2.27) 

which, on account of (2.24) and (2.25) is equal to: 

                                                   44 UUTT kiikik                                                     (2.28) 

From (2.1) and (2.2) the three-tensor: 

                                                          ikikikS   00
 

in the stationary system is a real symmetrical matrix. Also, the corresponding normalized 

eigenvectors  
)(0 j

h  satisfy the orthonormality relations: 
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hh                                                          (2.29a) 

and: 
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The eigenvalues 
0

)( jp ,  the principal stresses, are the three roots of the following algebraic 

equation, in which  λ  is the unknown: 

                                                   000  ikikikikS                                            (2.30) 

The matrix  
0
ikS   can be also written in terms of the eigenvalues and eigenvectors as: 
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From eqs. (2.23) and (2.31) we obtain the following form of the stress four-tensor in  S
o
: 
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Hence, in any system  S  one has: 
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From (2.24), (2.25), (2.27) and (2.33) we obtain the following expressions:  
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By putting further: 
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and introducing the notation  ba    for the direct product of the vectors  a  and  b,  then eqn (2.35) 

can be written for the relative stress tensor  σ  as following: 
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Also, the triad vectors  
)( j

ih   satisfy the tensor relations: 
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where  Δik  is given by (2.18). 

If the stationary system  S
0
  for every event point is chosen in such a way that the spatial axes in 

S
0
 and in  S  have the same orientation, one obtains: 
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with:                       
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From (2.34) and (2.40) with  i = k = 4  we have: 
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In the stationary system, (2.37) reduces further to:                           
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Thus, from (2.42) we obtain the following transformation law for the energy density: 
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and the mass density: 
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From (2.40) and (2.34) with  k = 4, one obtains the momentum density  g  with the 

components  icTg ii 4 : 
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Moreover, from (2.40) and (2.35) we have the relative stress tensor: 
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In the special case  u = (u,0,0),  where the notation of the matter at the point considered is 

parallel to the x1-axis (see Figs.1 and 2), the transformation equations (2.44), (2.46) and (2.47) 

reduce to: 
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and finally the relative stress tensor gives the Universal Equation of Elasticity: 
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where  γ  is given by (2.41). So, as it could be easily seen the relative stress tensor is not 

symmetrical, in contrast to the absolute stress tensor which is symmetrical. 

 

3 Elastic Stress Analysis for Next Generation Aircraft & Spacecraft 

 

Consider the stationary frame of Fig. 1 with  Γ1  the portion of the boundary of the body on 

which displacements are presented,  Γ2  the surface of the body on which the force tractions are 

employed and  Γ  the total surface of the body equal to  Γ1+Γ2. 

Furthermore, for the principal of virtual displacements, for linear elastic problems then the 

following formula is valid:  
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in which  uk  are defined the virtual displacements, satisfying the homogeneous boundary 

conditions  0ku   on  Γ1, bk  the body forces (Fig. 1) and  pk  the surface tractions at the point  k  

of the body. (Fig. 3) 

Beyond the above, (3.1) can be written as following if uk do not satisfy the previous 

conditions on  Γ1: 
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where  
0
jkjk np    are the surface tractions corresponding to the  uk  system. 

 

By integrating (3.2) then one has: 
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in which  jk   denote the strains. 

Furthermore, by a second integration (3.3) reduces to: 
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On the other hand, a fundamental solution should be found, satisfying the equilibrium 

equations, of the following type: 
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in which  i
l   is the Dirac delta function which represents a unit load at  i  in the  l  direction. 

The fundamental solution for a three-dimensional isotropic body can be written as: [31] 
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where  G  denotes the shear modulus,  v  Poisson’s ratio,  n  the normal to the surface of the body,  

lk   Kronecker’s delta,  r  the distance from the point of application of the load to the point under 

consideration and  nj  the direction cosines (Fig.3). 

The displacements at a point are given by the formula: 
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Thus, (3.7) takes the following form for the  “l”  component: 

                                              
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By differentiating  u  at the internal points, one obtains the stress-tensor for an isotropic 

medium: 
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Also, after carrying out the differentiation we have: 
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Eq. (3.10) can be further written as follows: 
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where the third order tensor components  Dkij  and  Skij  are given by the formula: 
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Finally, because of eqs (2.49) and (3.11) by considering the moving system  S  of Fig. 2, 

then the stress-tensor reduces to the form: 
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where  0
ij   are given by. (3.11) to (3.13). 

The following Table 1 shows the values of  γ  as given by (2.41) for some arbitrary values 

of the velocity  u  for the next generation aircraft or spacecraft: 

 

Table 1 

Velocity  u   1 1 2 2u c  Velocity  u   1 1 2 2u c  

 50,000 km/h 1.000000001    0.800c    1.666666667 

100,000 km/h 1.000000004    0.900c    2.294157339 

200,000 km/h 1.000000017    0.950c    3.202563076 

500,000 km/h 1.000000107    0.990c    7.088812050 

10Ε+06  km/h 1.000000429    0.999c    22.36627204 

10Ε+07  km/h 1.000042870     0.9999c     70.71244596 

10Ε+08  km/h 1.004314456     0.99999c     223.6073568 

2x10Ε+8 km/h 1.017600788     0.999999c     707.1067812 

         c/3 1.060660172     0.9999999c     2236.067978 

         c/2 1.154700538     0.99999999c     7071.067812 

        2c/3 1.341640786     0.999999999c     22360.67978 

        3c/4 1.511857892 C      

 

 

So, from the above Table follows that for small velocities 50,000 km/h  to  200,000 km/h, 

the absolute and the relative stress tensor are nearly the same. On the contrary, for bigger velocities 

like  c/3, c/2 , 3c/4, or 0.80c  (c = speed of light), the variable  γ  takes values more than the unit 

and thus, relative stress tensor is very different from the absolute one. Finally, for values of the 

velocity of the moving structure near the speed of light, the variable  γ  takes bigger values, while 

when the velocity is equal to the speed of light, then  γ  tends to the infinity. 

Thus, the Singular Integral Operators Method (S.I.O.M.) [4], [8], [9], [11], [12], [13], [15] and 

[22] will be used for the numerical evaluation of the stress tensor (3.11), for every specific case.  

 

4 Next Generation Aircraft & Spacecraft Fracture Mechanics Analysis  

 

In the stationary frame for elastic materials in an in-plane loaded plate the first and second 

mode stress intensity factors are given by the formulas (Fig.4): [64] 
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Also, the relative first and second mode stress intensity factors for the airframes are equal 

to: 
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Hence, because of (3.14), eqs (4.3) and (4.4) can be written as: 
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On the contrary, the first, second and third mode stress intensity factors in the stationary 

frame for elastic materials in a 3-D solid are given by the relations (Fig.5): [65] 
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Furthermore, the relative first, second and third mode stress intensity factors for the 

airframes are equal to: 
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So, because of (3.14), eqs (4.10), (4.11) and (4.12) can be written as: 
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Finally, from eqs (4.13) to (4.15) follows that the relative first and third mode stress 

intensity factors are the same for both stationary and moving frames, while the relative second 

mode stress intensity factor is much different in the above frames. On the other hand, all the 
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relative stress intensity factors (first, second and third) are important for the fracture mechanics 

analysis of the next generation aircraft and spacecraft, as for their fracture mechanics analysis a 

combination of all the three intensity factors should be used [66]. These stress intensity factors are 

referred as the "Universal stress intensity factors". Hence, because of the above difference of the 

stress intensity factors, follows that the fracture behavior of the next generation aircraft and 

spacecraft would be much different and thus special materials should be used for their construction.  

 

5 Conclusions 

 

In the present investigation in the area of aeronautics technologies the theory of 

“Relativistic Elasticity” was proposed and applied for the design of a new generation large 

aircraft with speeds in the range of 50,000 km/h. Such a design and construction of a new 

generation aircraft will be applied to an increased market share of International 

Aeronautical Industries all over the world. Beyond the above, the theory of “Relativistic 

Elasticity”  was applied for the design of the next generation spacecraft moving with very 

high speeds, even approaching the speed of light, as the target of the International Space 

Agencies (ESA, NASA, etc.) is to achieve such spacecraft in the future, which should be as 

closer as possible. How far is this future ? We think it is closer than everybody would 

believe.  

Also, the future investigation concerns to the determination of the proper composite  

materials or any other kind of materials for the construction of the next generation 

spacecfracts, as usual composite solids are not proper for such a construction. Furthermore, 

the need for lighter, more affordable high performance aircraft and spacecraft has 

accelerated demand for new advanced concepts. For example composite solids like Fibre 

Metal Laminates (F.M.L.) would be ideal to increase the fatigue characteristics of the 

laminated metal structures by adding fibres in the bond line. Some of the advanced can be 

found in [67] and [68]. Change in material properties non-homogeneously are of utmost 

importance 

The theory of “Relativistic Elasticity” and correspondingly the “Universal 

Equation of Elasticity” show that there is a considerable difference between the absolute 

stress tensor and the relative stress tensor of the airframe even in the range of speeds of 

50,000 km/h. For bigger speeds the difference between the two stress tensors is very much 

increased. "Relativistic Mechanics" results as a combination of the theories of "Classical 
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Elasticity" and "Special Relativity".   

Finally, for the structural design of the next generation aircraft and spacecraft a 

very important factor which will be used, is the relative stress tensor which is not 

symmetrical and is much different than the absolute stress tensor. Another very important 

factor is the fracture mechanics analysis and the fatigue characteristics of the new materials 

which are suitable for the structural design of such new generation aircraft and spacecraft. 

So, the fracture mechanics analysis of the above super speed vehicles has shown that the 

relative stress intensity factors referred as "Universal stress intensity factors", are different 

than the absolute stress intensity factors and thus very special materials should be used for 

their construction. 

 

References 

 

[1] LADOPOULOS, E.G., On the numerical solution of the finite – part singular integral equations 

of the first and the second kind used in fracture mechanics, Comp. Meth. Appl. Mech. Engng 

65 (1987) 253 – 266. 

[2] LADOPOULOS, E.G., On the solution of the two – dimensional problem of a plane crack of 

arbitrary shape in an anisotropic material, J. Engng Fract. Mech. 28 (1987) 187 – 195. 

[3] LADOPOULOS, E.G., On the numerical evaluation of the singular integral equations used in 

two and three-dimensional plasticity problems, Mech. Res. Commun. 14 (1987) 263 – 274. 

[4] LADOPOULOS, E.G., Singular integral representation of three – dimensional plasticity 

fracture problem, Theor. Appl. Fract. Mech. 8 (1987) 205 – 211. 

[5] LADOPOULOS, E.G., On a new integration rule with the Gegenbauer polynomials for 

singular integral equations, used in the theory of elasticity, Ing. Arch. 58 (1988) 35 – 46. 

[6] LADOPOULOS, E.G., On the numerical evaluation of the general type of finite-part singular 

integrals and integral equations used in fracture mechanics, J. Engng Fract. Mech. 31 (1988) 

315 – 337. 

[7] LADOPOULOS, E.G., The general type of finite-part singular integrals and integral equations 

with logarithmic singularities used in fracture mechanics, Acta Mech. 75 (1988) 275 – 285. 

[8] LADOPOULOS, E.G., On the numerical solution of the multidimensional singular integrals 

and integral equations used in the theory of linear viscoelasticity, Int J.Math. Math. Scien. 11 

(1988) 561 – 574. 

[9] LADOPOULOS, E.G., Singular integral operators method for two – dimensional plasticity 

problems, Comp. Struct. 33 (1989) 859 – 865. 

[10] LADOPOULOS, E.G., Finite–part singular integro-differential equations arising in two-



  Aviation in Focus (Porto Alegre), v.3, n.1, p. 118-141 – jan./jul. 2012   133 
 

dimensional aerodynamics, Arch.. Mech. 41 (1989) 925 – 936. 

[11] LADOPOULOS, E.G., Cubature formulas for singular integral approximations used in three-

dimensional elasticity, Rev. Roum. Sci. Tech..,Mec. Appl. 34 (1989) 377 – 389. 

[12] LADOPOULOS, E.G., Singular integral operators method for three – dimensional elasto – 

plastic stress analysis, Comp. Struct. 38 (1991) 1 – 8. 

[13] LADOPOULOS, E.G., Singular integral operators method for two – dimensional elasto – 

plastic stress analysis, Forsch.. Ingen. 57 (1991) 152 – 158. 

[14] LADOPOULOS, E.G., New aspects for the generalization of the Sokhotski – Plemelj formulae 

for the solution of finite – part singular integrals used in fracture mechanics, Int. J. Fract. 54 

(1992) 317 – 328. 

[15] LADOPOULOS, E.G., Singular integral operators method for anisotropic elastic stress 

analysis, Comp. Struct. 48 (1993) 965 – 973. 

[16] LADOPOULOS, E.G., Systems of finite-part singular integral equations in Lp applied to crack 

problems, J. Engng Fract. Mech.., 48 (1994), 257 – 266. 

[17] LADOPOULOS, E.G., ZISIS, V.A. and KRAVVARITIS, D., Singular integral equations in 

Hilbert space applied to crack problems, Theor.Appl. Fract. Mech. 9 (1988) 271 – 281. 

[18] ZISIS, V.A. and LADOPOULOS, E.G., Singular integral approximations in Hilbert spaces for 

elastic stress analysis in a circular ring with curvilinear cracks, Indus. Math. 39 (1989) 113 – 

134. 

[19] ZISIS, V.A. and LADOPOULOS, E.G., Two-dimensional singular integral equations exact 

solutions, J. Comp. Appl. Math. 31 (1990) 227 – 232. 

[20] LADOPOULOS, E.G., KRAVVARITIS, D., and ZISIS, V.A. Finite-part singular integral 

representation analysis in Lp of two-dimensional elasticity problems, J. Engng Fract. Mech. 43 

(1992) 445 – 454. 

[21] LADOPOULOS, E.G., and ZISIS, V.A., Singular integral representation of two-dimensional 

shear fracture mechanics problem, Rev.Roum. Sci. Tech., Mec. Appl.. 38 (1993) 617 – 628. 

[22] LADOPOULOS, E.G., ZISIS, V.A. and KRAVVARITIS, D., Multidimensional singular 

integral equations in Lp applied to three-dimensional thermoelastoplastic stress analysis, 

Comp. Struct. 52 (1994) 781 – 788. 

[23] LADOPOULOS, E.G., Non-linear integro-differential equations used in orthotropic shallow 

spherical shell analysis, Mech. Res. Commun. 18 (1991) 111 – 119. 

[24] LADOPOULOS, E.G., Non-linear integro-differential equations in sandwich plates stress 

analysis, Mech. Res. Commun. 21 (1994) 95 – 102. 

[25] LADOPOULOS, E.G., Non-linear singular integral representation for unsteady inviscid 

flowfields of 2-D airfoils, Mech. Res. Commun. 22 (1995) 25 – 34. 



  Aviation in Focus (Porto Alegre), v.3, n.1, p. 118-141 – jan./jul. 2012   134 
 

[26] LADOPOULOS, E.G., Non-linear multidimensional singular integral equations in 2-

dimensional fluid mechanics analysis, Int. J.Non-Lin. Mech. 35 (2000) 701 – 708. 

[27] LADOPOULOS, E.G. and ZISIS, V.A., Existence and uniqueness for non-linear singular 

integral equations used in fluid mechanics, Appl. Math. 42 (1997) 345 – 367. 

[28] LADOPOULOS, E.G. and ZISIS, V.A., Non-linear finite-part singular integral equations 

arising in two-dimensional fluid mechanics, Nonlin. Anal., Th. Meth. Appl. 42 (2000) 277 – 

290. 

[29] LADOPOULOS, E.G. and ZISIS, V.A., Non-linear singular integral approximations in Banach 

spaces, Nonlin. Anal., Th. Meth. Appl. 26 (1996) 1293 – 1299. 

[30] LADOPOULOS, E.G., Relativistic elastic stress analysis for moving frames, Rev. Roum. 

Sci.Tech., Mec. Appl. 36 (1991) 195 – 209. 

[31] LADOPOULOS, E.G., Singular Integral Equations, Linear and Non-Linear Theory and its 

Applications in Science and Engineering, Springer, New York, Berlin, 2000. 

[32] LADOPOULOS, E.G., Relativistic mechanics for airframes applied in aeronautical 

technologies, Adv. Bound. Elem. Tech. 10 (2009) 395 – 405. 

[33] MUSKHELISHVILI, N.I., Some Basic Problems of the Mathematical Theory of Elasticity,  

Noordhoff, Groningen, Netherlands, 1953. 

[34] GREEN, A.E. and ZERNA, W., Theoretical Elasticity, Oxford Univ. Press, Oxford, 1954. 

[35] BOLEY, B.A. and WEINER, J.H., Theory of Thermal Stresses, J.Wiley, New York, 1960. 

[36] NOWACKI , W., Thermoelasticity, Pergamon Press, Oxford, 1962. 

[37] DRUCKER, D.C. and GILMAN, J.J., Fracture of Solids, J.Wiley, New York, 1963. 

[38] LEKHNITSKII, S.G., Theory of Elasticity of an Anisotropic Elastic Body, Holden-Day, San 

Fransisco, 1963. 

[39] TRUESDELL, C. and NOLL, W., The Non-linear Field Theories of Mechanics, Handbuch der 

Physic, Vol. III/3, Springer, Berlin, 1965. 

[40] LIEBOWITZ, H., Fracture, Academic Press, New York, 1968. 

[41] SNEDDON, I.N. and LOWENGRUP, M., Crack Problems in the Classical Theory of 

Elasticity, J.Wiley, New York, 1969. 

[42] LIONS, J.L., Quelques Methodes de Resolution des Problemes aux Limites Non Lineaires,  

Dunod, Paris, 1969. 

[43] ODEN, J.T., Finite Elements in Nonlinear Continua, McGraw Hill, New York, 1972. 

[44] ERINGEN, A.C., Continuum Physics, Academic Press, New York, 1972. 

[45] DUVANT, G. and LIONS, J.L., Les Inequations en Mecanique et en Physique, Dunod, Paris, 

1972. 

[46] FICHERA G., Boundary Value Problems of Elasticity with Unilateral Constraints, Handbuch 

der Physik, Vol. VIa/2, Springer, Berlin, 1972. 



  Aviation in Focus (Porto Alegre), v.3, n.1, p. 118-141 – jan./jul. 2012   135 
 

[47] GERMAIN, P., Mecanique des Milieux Continus, Masson, Paris, 1972. 

[48] WANG, C.C. and TRUESDELL, C., Introduction to Rational Elasticity, Noordhoff, 

Groningen, Netherlands, 1973. 

[49] WASHIZU, K., Variational Methods in Elasticity and Plasticity, Pergamon Press, Oxford, 

1975. 

[50] KUPRADZE, V.D., Three-dimensional Problems in the Mathematical Theory of Elasticity and 

Thermoelasticity, Nauka, Moscow, 1976. 

[51] GURTIN, M.E., Introduction to Continuum Mechanics, Academic Press, New York, 1981. 

[52] CIARLET , P.G., Topics in Mathematical Elasticity, North Holland, Amsterdam, 1985. 

[53] LAUE, M.von, Die Relativitätstheorie, Vol. 1, Vieweg und Sohn, Braunschweig, 1919. 

[54] GOLD, T., Recent Developments in General Relativity, Pergamon Press, New York, 1962. 

[55] PIRANI, F.A.E, Lectures on General Relativity, Vol.1, Prentice-Hall, New Jersey, 1964. 

[56] GURSEY, F., Relativity, Groups and Topology, Gordon and Breach, New York, 1964. 

[57] ADLER, R., Introduction to General Relativity, McGraw-Hill, New York, 1965. 

[58] RINDLER ,W., Special Relativity, Oliver and Boyd, Edinburgh, 1966. 

[59] MOLLER, C., The Theory of Relativity, Oxford University Press, Oxford, 1972. 

[60] SYNGE, J.L., General Relativity, Clarendon Press, Oxford,. 1972. 

[61] SIH, G. C., Use specification of multiscale materials for life spanned over macro-, micro-, 

nano-, and pico-scale, Theor. Appl. Fract. Mech. 53(2) (2010) 94-112. 

[62] SIH, G. C., Scale shifting laws from pico to macro in consecutive segments by use of 

transitional functions, Theor. Appl. Fract. Mech. 53(3) (2010) 165-179. 

[63] SIH, G. C., Mesomechanics of energy and mass interaction for dissipative systems, J. Phys. 

Mesomech.13 (5-6)(2010) 233-244. 

[64] IRWIN, G.R., Fracture in Encyclopaedia of Physics, (Ed. S.Flugge), Vol. VI, Spinger, 

Heidelberg, 1958. 

[65] KASSIR, M.K. and SIH, G.C., Three-dimensional Crack Problems in Mechanics of Fracture, 

(Ed. G.C.SIH), Vol. II, Noordhoff, Netherlands, 1975. 

[66] SIH, G.C., Mechanics of Fracture Initiation and Propagation, Kluwer Academic Publishers, 

Boston,1991. 

[67] SIH, G. C. and TANG, K. K., Assurance of reliable time limits in fatigue depending on choice 

of failure simulation: energy density versus stress intensity, Theor. Appl. Fract. Mech. 55(1) 

(2011)39-51. 



  Aviation in Focus (Porto Alegre), v.3, n.1, p. 118-141 – jan./jul. 2012   136 
 

[68] SIH, G. C., Multiscale reliability of physical systems based on the principle of least variance, 

Theor.Appl. Fract. Mech. 55(1) (2011)1-19. 

 

 

 

 

 

Figure Captions 

 

Figure 1:       The state of stress 
0

ik  in the stationary system OS .  

 

Figure 2:       The state of stress 
0

ik  in the stationary system OS  and ik  in the airframe system  

S, with velocity u parallel to the 1x  - axis. 

 

Figure 3:       The stationary system 
OS . 

 

Figure 4:        2-D Coordinates near the crack tip. 

 

Figure5:         3-D Coordinates near the crack tip. 
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Figure 1 

 

 



  Aviation in Focus (Porto Alegre), v.3, n.1, p. 118-141 – jan./jul. 2012   138 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 
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Figure 3 
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Figure 5 

 

 

 

 

 


