
PONTIFICAL CATHOLIC UNIVERSITY OF RIO GRANDE DO SUL
FACULTY OF INFORMATICS

COMPUTER SCIENCE UNDERGRADUATE PROGRAM

PEPS2015 - STOCHASTIC
AUTOMATA NETWORKS

SOFTWARE TOOL

LUIS GUSTAVO RAMOS ZANI

Final Undergraduate Work II submitted to
the Pontifical Catholic University of Rio
Grande do Sul in partial fullfillment of the
requirements for the degree of Bachelor in
Computer Science.

Advisor: Prof. Dr. Paulo Lemelle Fernandes

Porto Alegre
2015

This work is dedicated to my parents and grandparents.

“There are two ways of constructing a software
design. One way is to make it so simple that
there are obviously no deficiencies. And the other
way is to make it so complicated that there are
no obvious deficiencies.”
(C.A.R. Hoare)

ACKNOWLEDGMENTS

First of all, I am truly grateful to God for guiding me along the way and allow me to get
to this point.

Among all people that have somehow supported me along these five years of undergraduate
course, I would like to thank the ones that play an important role in my life, specially:

My parents, Mauro and Neiva, for all love and care they have always had for me, for
supporting and encouraging me at all times. Everything that I’ve accomplished so far is because of
you. I love you both.

My girlfriend, for all the pacience, support, and friendship in all moments. I know that
many of them were not easy, but you were always there with me. Your love and care have always
been very important for me.

My friend, Ramon Fernandes, for the imense help in several moments along the course.
Thank you for all the very productive study hours and for being there whenever I needed a friend to
talk to or a partner to discuss any kind of problem with.

My advisor, Paulo Fernandes, for the support. Your presence was important in some crucial
moments along the way. I appologize for any incovenient I may have caused to you.

CNPq, for sponsoring my research project that has been developed along with this work.
The board of examinators, Prof. Afonso Sales (PUCRS) and Prof. Rafael Chanin (PU-

CRS), for all the constructive criticism that contributed to improve the quality of this work.

PEPS2015 - STOCHASTIC AUTOMATA NETWORKS SOFTWARE
TOOL

ABSTRACT

This work presents the new version of PEPS software tool, designed for solving models
expressed using Stochastic Automata Networks (SAN). The SAN formalism is historically the first
Markovian structured formalism employing Tensor Algebra. PEPS tool was first launched in the
late 80’s and it’s still a live project, therefore a short timeline of its previous versions, as well as the
new features included in version 2015, are presented, such as an efficient and powerful just-in-time
function evaluation.

Keywords: Analytical Modelling, Markovian Formalisms, PEPS, Stochastic Automata Networks,
Systems Performance Evaluation.

LIST OF FIGURES LIST OF FIGURES

LIST OF FIGURES

Figure 1.1 – Overview of PEPS 2015 modules and data . 12
Figure 2.1 – Temporary data structures . 16
Figure 3.1 – Example of a SAN model with independent automata 18
Figure 3.2 – Continuous Time Markov Chain equivalent to SAN model with 2 indepen-

dent automata in Figure 3.1 . 19
Figure 3.3 – Example of a SAN model with synchronizing events and functional rates . . 20
Figure 3.4 – Continuous Time Markov Chain equivalent to SAN model in Figure 3.3 . . . 21
Figure 3.5 – Example of a SAN model . 23
Figure 3.6 – A state space S represented by a MDD . 29
Figure 3.7 – RSS of the SAN model represented by a MDD . 30
Figure 3.8 – Compilation and resolution of the Client-Server SAN model 33
Figure 4.1 – PEPS2015 Architecture . 35
Figure 4.2 – Network dictionary . 39
Figure 4.3 – Example of Hanoi Tower . 41
Figure 4.4 – Example of Hanoi Tower - SAN model . 42
Figure 5.1 – Compilation of the Hanoi Tower SAN model in PEPS2007 46
Figure 5.2 – Resolution of the Hanoi Tower SAN model in PEPS2007 46
Figure 5.3 – Compilation of the Hanoi Tower SAN model in PEPS2015 47
Figure 5.4 – Resolution of the Hanoi Tower SAN model in PEPS2015 48

6

LIST OF TABLES LIST OF TABLES

LIST OF TABLES

Table 3.1 – PEPS numerical results . 34
Table 5.1 – PEPS2015 numerical results . 45

7

LIST OF TABLES LIST OF TABLES

LIST OF ACRONYMS

PUCRS – Pontifícia Universidade Católica do Rio Grande do Sul
FUW – Final Undergraduate Work II
SAN – Stochastic Automata Networks
PEPS – Performance Evaluation of Parallel Systems
MDD – Multi-Valued Decision Diagrams
CTMC – Continuous Time Markov Chain
DTMC – Discrete Time Markov Chain
CPU – Central Processing Unit
RSS – Reachable State Space
AUNF – Additive Unitary Normal Factor
GMRES – Generalized Minimal Residual Method
PSS – Product State Space
FAS – First Available Server
JIT – Just-In-Time

8

CONTENTS CONTENTS

CONTENTS

1 INTRODUCTION . 11

1.1 ANALYTICAL METHODS . 11
1.2 PEPS . 12
1.3 GENERAL OBJECTIVE . 13
1.4 SPECIFIC OBJECTIVES . 13
1.5 DOCUMENT STRUCTURE . 13

2 PROBLEM DESCRIPTION . 15

3 RELATED WORK AND THEORETICAL FOUNDATION 17

3.1 MARKOVIAN MODELS . 17
3.2 SAN . 17
3.2.1 STOCHASTIC AUTOMATA . 18
3.2.2 EVENTS . 19
3.2.3 FUNCTIONAL RATES . 20
3.2.4 REACHABILITY FUNCTION . 21
3.2.5 INTEGRATION FUNCTIONS . 22
3.2.6 SAN EXAMPLE . 22
3.3 PEPS 2000 . 24
3.3.1 TEXTUAL INPUT . 24
3.3.2 SHUFFLE ALGORITHM . 25
3.4 PEPS 2003 . 26
3.4.1 LEX/YACC COMPILER . 26
3.4.2 INTEGRATION FUNCTIONS . 26
3.5 PEPS 2007 . 27
3.5.1 MODULARIZED SOFTWARE STRUCTURE . 27
3.5.2 NEW COMPILER . 27
3.5.3 BOUNDING METHODS . 28
3.5.4 AUTOMATA AGGREGATION . 28
3.6 PEPS 2009 . 28
3.6.1 REACHABLE STATE SPACE EFFICIENT GENERATION . 29
3.6.2 SPLIT ALGORITHM . 31

9

CONTENTS CONTENTS

3.7 FILE (.SAN) EXAMPLE . 31
3.8 USAGE . 32
3.9 SUPPORTED MODELS . 33

4 PROJECT DESCRIPTION . 35

4.1 ARCHITECTURE . 35
4.2 TECHNOLOGY . 36
4.2.1 PROGRAMMING LANGUAGE . 36
4.2.2 ENVIRONMENT . 36
4.3 PEPS 2015 - NEW FEATURES . 37
4.3.1 C FUNCTIONS . 37
4.3.2 EXAMPLE OF THE NEW .SAN FILE . 41

5 PRACTICAL CAPABILITIES . 45

5.1 ANALYSIS CRITERIA . 45
5.2 TEST SCENARIOS . 45
5.2.1 HANOI TOWER . 45
5.2.2 DISCRETE SPATIAL MOBILE NODE DISTRIBUTION . 46
5.3 RESULTS AND VALIDATION OF IMPLEMENTED FEATURES 48

6 FUTURE WORK . 50

6.1 SYMBOLIC SOLUTION . 50
6.1.1 MEANINGFUL TEST SCENARIO . 50

7 CONCLUSION . 51

REFERENCES . 53

10

CHAPTER 1. INTRODUCTION

1. INTRODUCTION

1.1 Analytical Methods

The analytical methods approach for systems performance evaluation consists in modeling
a real system through its mathematical relations among the components. Using these mathematical
relations, we can describe the system as a set of possible states and transitions between them with
an associated behavior.

Among several existent methods, Markov Chains [1] are widely used to achieve stationary
solutions for the models due to its large representation capabilities and simplicity on visualization
and comprehension. However, this simplicity is also one of the biggest issues for using Markov
Chains due to the well-known problem of state space explosion when modeling very large and
complex models [33]. As more components are added to the model, the number of states in
the corresponding Markov Chain increases dramatically, making harder to represent some models.
Additionaly, the structure used to store the model is a square matrix of nth order, where n is the
number of states in the system. In case the matrix contains many zero elements, a sparse matrix
could be used to store the model in order to reduce storage space. Moreover, not only there is
the storage issue, but to solve the model, it’s necessary to resolve the linear system of equations
represented by the matrix, which also makes it difficult to obtain numerical results [31].

In order to work around the limitations of Markov Chains, another efficient approach that
has been used by the cientific community and systems designers is the Stochastic Petri Nets [27].
This is a compact and efficient formalism to describe complex systems that contain synchronization
and parallelism. It’s said to be an efficient method because the solution of the problem is given by
the product of its terms, which means it’s not necessary to calculate the probability of each and every
possible state to obtain the performance indexes of the model. However, it has been noticed that
the actual impact of this formalism is on improving the modeling process, without adding significant
improvements to the problem of achieving stationary solutions efficiently.

In that sense, Stochastic Authomata Networks (SAN) formalism proposes a compact way
to describe complex systems and also optimizes the achievement of stationary solutions. SAN is a
structured stochastic Markovian formalism first proposed by Plateau [30]. It allows us to represent an
entire system by splitting it into a set of subsystems, each with an independent behavior itself (local
events), and also eventual interdependencies among each other (synchronizing events and functional
rates). In that sense, the framework proposed by Plateau estabilishes a structured and modular way
to describe discrete and continuous-time Markovian models, but also emcompasses parallelism (when
subsystems do not interact with each other) and synchronization (when subsystems interact with
each other). SAN formalism is equivalent to Markov Chains in regards to scope of representation,
but unlike them, SAN provides a model structure based on generalized tensor algebra [20], which
makes it easier to achieve the stationary solution.

11

CHAPTER 1. INTRODUCTION 1.2. PEPS

1.2 PEPS

PEPS project started in the late 80’s and its goal was to develop a software package
capable of computing numerical solutions for the SAN formalism. The first version of the tool
was presented in [29] and featured a basic vector-matrix multiplication, where the matrix columns
were generated one by one in each iteration. By using tensor algebra, only the tensor formula of
the Kronecker descriptor needed to be stored, and the full matrix was never generated. Later on,
another three official versions of the software tool were published in the cientific community.

Among several areas to which PEPS tool may be applied, it is convenient to cite the areas
of computing and communication performance modeling, parallel and distributed systems, and finite
capacity queueing networks [25]. PEPS differs from other tools supporting extended automata, such
as UPPAAL [4] and KRONOS [2], in regards to scope, as the mentioned tools are more focused on
modeling, validation and verification of real-time systems1.

The core contribution of this project, in regards to PEPS latest version, is essentially a
powerful and optimized function evaluation. This feature, as well as the techniques and algorithms
implemented in the tool are shown in Figure 1.1, namely: a compact and efficient reachable state
space (RSS) storage through the application of Multi-Valued Decision Diagrams (MDD), Shuffle
and Split algorithms, and Tensor Algebra.

Figure 1.1 – Overview of PEPS 2015 modules and data

1Real-Time systems use networks of timed automata to model tasks that must be performed within strict time
deadlines.

12

CHAPTER 1. INTRODUCTION 1.3. GENERAL OBJECTIVE

1.3 General Objective

The objective of this work is to explore the capabilities of the last published version of the
software tool, aiming to identify opportunities of improvement both in the modelling process and
system performance. For that, a detailed study of the current version was conducted along the year.

The general objective of the project is to apply scientific techniques to evaluate the ca-
pabilities of the developed software tool. The evaluations were done by means of the development
of scientific articles. All of the proposed activities related to PEPS developed in this project will be
available for the academic community as the newest version of the software tool, PEPS2015.

1.4 Specific Objectives

In a nutshell, the specific objectives that were achieved throughout this project are:

• Study the current implementation of PEPS software tool, version 2007.

• Study the algorithms and techniques used in PEPS2007.

• Study evaluation criteria for the performance of scientific software tools.

• Study other existent techniques, not currently implemented in PEPS2007, to determine whether
they are relevant for the new version.

• Propose new features for a brand new version of PEPS tool.

• Define an implementation plan for the new features of PEPS, version 2015.

• Implement the proposed new features.

• Validate the implementation of the new features.

• Evaluate obtained results.

1.5 Document Structure

This document is organized as follows: Chapter I briefly contextualizes the reader on the
subject, points out the objectives, and introduces the idea proposed in this project. Chapter II
presents the motivation of this work, i.e. the description of the problem we intend to solve. Chapter
III covers the theoretical foundation on which all the concepts involved in this work are based and
presents a timeline of the related work that has been published so far. Chapter IV presents a detailed

13

CHAPTER 1. INTRODUCTION 1.5. DOCUMENT STRUCTURE

explanation of the proposed solution for the problem described in Chapter II. Chapter V contains the
analysis criteria defined to evaluate and validate the implemented features, as well as some testing
scenarios and the final results. Finally, Chapters VI and VII expose our final conclusions and point
out some ideas about the future work that can be done to improve the capabilities of the software
tool.

14

CHAPTER 2. PROBLEM DESCRIPTION

2. PROBLEM DESCRIPTION

The last published version of PEPS, i.e. PEPS2007, is divided into two modules: one is
responsible for the entire compilation process, and the other one takes care of the execution process
of solving the model using numerical methods to try to achieve the stationary solution. The focus
here will be in the compilation part of the tool.

The program takes a specific file containing the complete description of the SAN model
as an input (which will be explained into details later in this document) and processes each section
of that file during compilation, populating its internal data structures in order to store the model.
The sections in the file contain the specifications of all components of the model, such as automata,
states, transitions, rates, etc.

After a deep analysis of the whole compilation process step by step, we noticed that when
the input model contains functional rates, the program uses a Stack-based data structure to store
the functions internally. That creates a limitation for the tool in regards to the size of the models
it can handle because it becomes dependent on the size defined for the stack. In other words, it
means that if a model has many functional rates, which is quite common, the stack capacity might
overflow before all functions get stored, making the tool unable to handle that model. Furthermore,
the program also uses some temporary data structures during compilation to store information about
the functions present in the model, which increases the memory usage and could eventually lead to
an overflow as those data structures grow in size, although it’s less likely to happen due to available
memory resources we have nowadays.

Once all functions are finally stored, the program “translates” each of them into actual
C-coded functions and creates a just-in-time (.jit) file containing every translated function in C
language. The progam then calls GCC to compile the generated C code and produce a shared
object that can be linked with other objects to form the executable. The shared object is used by
the execution module in runtime to evaluate the functions when trying to solve the model.

15

CHAPTER 2. PROBLEM DESCRIPTION

A simplified scheme of the structures involved on storing the functions of the model during
compilation can be seen in Figure 2.1.

Figure 2.1 – Temporary data structures

With that in mind, we intended to propose a solution to work around the use of the stack
when processing the functions present in the model and also try to eliminate the need of using the
intermediate temporary data structures used for extracting data from the input file and move it to
the permanent data structures. This way, the tool would supposedly use less memory in compile
time and would be able to handle a much wider variety of models that were not supported in its
previous versions.

16

CHAPTER 3. RELATED WORK AND THEORETICAL FOUNDATION

3. RELATED WORK AND THEORETICAL FOUNDATION

3.1 Markovian Models

Unlike deterministic processes, which can only evolve in one way (like the solution of
a differential equation, for example), stochastic processes consist of a set of random variables,
representing the evolution of a model with such random variables over time. A stochastic process
contains a certain level of indeterminacy in a way that even if the initial state is known, there are
several different directions in which the process may evolve. Some common examples of stochastic
time series include stock market, exchange rate variations, and audio/video signals.

Markovian models are stochastic models used for modeling systems that possess randomly
changing behavior with an exponential distribution, i.e. events occur continuously and independently
at a constant average rate. The future states depend exclusively on the present state of the model
and not on the sequence of events that preceded it, there is no memory. This memoryless property
is known as the Markov property. Generally, it enables us to solve problems that would otherwise
be solvable only in theory, given a large but finite time, but which pratice would take too long for
the solution to be useful, also known as intractable problems.

The theory of Markov processes can be divided into subtheories that depend on whether
time is discrete or continuous or whether the set of possible states is finite or countably infinite.
In this case, we speak about Markov chains. If the set of possible states has cardinality of the
continuum, we speak of continuous Markov processes.

A Markov chain can have transitions between states occuring at discrete moments in time,
and in this case is called a Discrete Time Markov Chain (DTMC); or it can have transitions occuring
at any moment, with a continuous set of times, and so is called a Continuous Time Markov Chain
(CTMC). Since Markovian Chains are not the focus in this work, if the reader is interested in more
details about DTMC and CTMC, it can be found in [11].

3.2 SAN

Stochastic Automata Networks is a Markovian formalism designed for modeling systems
with large state spaces. It consists in modeling a system as various subsystems, with eventual
interactions among the modules. This modularization defined by SAN enables complex systems to
be stored and solved efficiently, for it avoids the explosion on the number of states that happens
when using Markov Chains, to which SAN is equivalent in regards to representation.

Each subsystem is defined as an individual stochastic automaton and transitions between
the states of this automaton. The transitions between the states of each automaton are modeled

17

CHAPTER 3. RELATED WORK AND THEORETICAL FOUNDATION 3.2. SAN

by a stochastic process in the continuous or discrete time scale defined by exponential or geometric
distributions, respectively. In this work, we will be focusing on continuous time models.

It’s important to mention that every SAN can be represented by a single stochastic automa-
ton that contains all possible states of the system. This automaton corresponds to the equivalent
Markov Chain for that SAN model.

3.2.1 Stochastic Automata

A stochastic automaton is mathematical model of a system that contains descrete inputs
and outputs. The system can be in any state of a finite set of states defined for that system. An
internal state of the system summarizes the information about previous inputs and indicates what
is necessary to determine the behavior of the system for the following inputs. In that sense, a
stochastic automaton can be defined as a finite set of states and a finite set of transitions between
those states. It is called stochastic because the time is treated as a random variable that follows an
exponential distribution in the continuous time scale.

A state in the SAN model is called a global state of the system and consists of the current
individual state of each automaton in the model [30]. A change in the global state of the system is
given by the change of a local state in any of the compounding automata in the model. A change
in the local state of an automaton is given by a transition. Transitions are elements that indicate
the possibility of changing from state to another, however each transition must have an associated
event in order to be triggered. There can be any number of automata in a SAN model.

Figure 3.1 shows an example of a SAN model with two completely independent automata.

Figure 3.1 – Example of a SAN model with independent automata

In the example presented in Figure 3.1, the automaton A(1) contains three local states
0(1), 1(1) and 2(1), and the automaton A(2) contains two states 0(2) and 1(2). Three of the five

18

CHAPTER 3. RELATED WORK AND THEORETICAL FOUNDATION 3.2. SAN

events in the model (e1, e2 and e3) occur in A(1), while the other two (e4 and e5) occur in A(2).
Considering the event rates shown in the table, Figure 3.2 depicts the equivalent CTMC to the SAN
model presented in Figure 3.1. Notice that there are only local events in each automata in the
model, therefore there is no interaction whatsoever between them.

Figure 3.2 – Continuous Time Markov Chain equivalent to SAN model with 2 independent automata
in Figure 3.1

3.2.2 Events

An event is the ocurrence of a transition that changes the global state of the model, either
because of a change in a local state of an automaton (local events) or because of a synchronized
change in two or more autoamta (synchronizing events). Each transition must have one or more
associated events and it is triggered whenever any of those events occur.

Local events are used in SAN to alter the local state of a single automaton, without
affecting any other automaton in the model. This type of event allow various automata to work in
parallel, not interfering on each other’s behavior, with no interactions between them. Some examples
of local events can be seen in Figure 3.1, in which all events are this type.

Synchronizing events, on the other hand, are the ones used in SAN for altering the local
state of two or more automata simultaneously, i.e. when a synchronizing event occurs in one
automaton, it necessarily also occurs in all the other automata involved in that event. Therefore,
the interaction between automata is given by this type of event, in the form of synchronization when
triggering transitions.

19

CHAPTER 3. RELATED WORK AND THEORETICAL FOUNDATION 3.2. SAN

An event is considered local if it only appears in the set of transitions of only one automaton
and synchronizing in case the same event appears in the set of transitions of two or more automata
when the model is designed.

Every event must have an associated firing rate, to which can be assigned either a constant
or functional value. Functional rates can have different values, depending on the state of the other
automata in the model.

3.2.3 Functional Rates

Apart from the synchronizing events, the other way automata can interact is through
functional rates. By using functions to define transition rates it is possible to assign different values
to the same event, according to the global state of the model.

Functional rates are expressed by functions that take into account the current states of the
automata in the model, so the value can vary depending on the state that each automaton involved
in the function is currently in.

In the example shown in Figure 3.3, there are also 2 automata and 5 events, similarly to
the example in Figure 3.1, but in this case, the event e5 was turned into a synchronizing event,
once it appears on both automata and it has different probabilities associated to each transition in
automaton A(1). Event e5 has also changed, since it now has the function f1 associated to the firing
rate of the event.

Figure 3.3 – Example of a SAN model with synchronizing events and functional rates

20

CHAPTER 3. RELATED WORK AND THEORETICAL FOUNDATION 3.2. SAN

Function f1 shown in Figure 3.3 is defined as:

f1 =


λ1 if automaton A(1) is in state 0(1);
0 if automaton A(1) is in state 1(1);
λ2 if automaton A(1) is in state 2(1);

This means that the firing rate of the transition from state 0(2) to 1(2) is λ1 in case
automaton A(1) is in state 0(1) or it is λ2 in case automaton A(1) is in state 2(1). If the state if
automaton A(1) is 1(1), then the transition will never occur.

The CTMC equivalent to the SAN model shown in Figure 3.3 can be seen in Figure 3.4.

Figure 3.4 – Continuous Time Markov Chain equivalent to SAN model in Figure 3.3

3.2.4 Reachability Function

Another type of function that is used in SAN modeling is called the Reachability Function.
This function is described using the same rules applied to the specification of functional rates, but
it plays a completely different role in the model.

Since the representation of a model in SAN format is modularized and the global automaton
that corresponds to the equivalent Markov Chain is given by the combination of all automata in the
model, it is necessary to specify a function that defines which of the states of this global automaton
representing the SAN can actually be reached.

The definition of which states can be reached in SAN is given by the reachability function.
It is easier to understand the concept of reachability with an example of a resource sharing model,

21

CHAPTER 3. RELATED WORK AND THEORETICAL FOUNDATION 3.2. SAN

in which there are N processes trying to access R resources. For any R smaller then N, the global
state that represents all N processes acessing one resource would be an unreachable state, for it does
not belong to the reality of the model it has to be eliminated from the model by the reachability
function because the probability of the model to be in this state is equal to 0.0.

3.2.5 Integration Functions

The same way we define functional rates and the probability function, it is also necessary to
define Integration Functions for a SAN model. These are the functions that evaluate the probability
of the SAN model to be in a specific state.

This way, it is possible to build compound integration functions that evaluate the proba-
bility of the model being in a set of states, allowing us to obtain some performance and reliability
indexes for the model.

The integration functions are evaluated based on the probability vector, that contains the
probability of the model to be in each of the states in the vector.

An example of an integration function, considering the example shown in Figure 3.1, is
given by g, which indicates the probability of automaton A(2) being in state 0(2):

g = st(A(2)) == 0(2)

Roughly, all funtions are defined the same way in SAN. The only difference is how they
are applied in the model. The formal definition of the integration functions for SAN models can be
found in [9].

3.2.6 SAN Example

In order to clarify the presented concepts so far, this section presents an example of an
arbitrary context that can be modelled with SAN formalism.

22

CHAPTER 3. RELATED WORK AND THEORETICAL FOUNDATION 3.2. SAN

Figure 3.5 – Example of a SAN model

The SAN model in Fig. 3.5 describes a Client-Server system as a composition of two
subsystems. The first one, named Client, contains 4 local states: Idle, Transmitting, Receiving,
and Working ; and the second one, called Server, has three local states: Idle, Transmitting, and
Receiving, in order to represent the basic functioning of the respective components. Notice that
the local events defined in this model only change the state of one automaton at a time, without
affecting any other indeed. In this model, the local events are named proc, for “process", more,
for “more data to be transmitted", no_more, for “nothing else to be transmitted", and wait, for
“wait for requests". Also notice that the synchronizing events occur simultaneously in more than
one automaton, making all of the affected automata change their states at the same time. In this
case, the synchronizing events are named req, for “request", and resp, for “response". They change
states from “Transmitting" to “Receiving" on the Client side, and vice-versa on the Server side with
only one occurrence.

The functional transition rates determine that the average firing rate of the events is not
a constant value 1. In fact, there is a function (in this case, F1) that determines the possible values
for this rate, depending on the state of the other automaton. In the example depicted in Fig. 3.5,
the functional transition rate F1 indicates that the Server only changes states from “Transmitting"
to “Idle" when the Client is at the state “Working", meaning that while there is communication
between the components, the server cannot go idle.

1Since it is a Markovian Formalism, SAN assumes that all rates represent the average of an exponential distribution.
Hence, a constant rate stands for the average frequency of an exponentially distributed phenomenon [18].

23

CHAPTER 3. RELATED WORK AND THEORETICAL FOUNDATION 3.3. PEPS 2000

3.3 PEPS 2000

One of the earliest versions of PEPS project was released in the year 2000. The main
features implemented in that version are described hereafter:

3.3.1 Textual Input

PEPS software tool takes files with the extension .san as an input. These files contain the
detailed description of every component of a SAN model that is to be numerically resolved by the
tool. The specification of a SAN is basically composed of five sections: identifiers, events, partial
reachability, network, and results. An example of a .san file that represents the model depicted in
Fig. 3.5 is presented in Chapter 3.7 of this document.

• Identifiers: The first section of a .san file is where the average firing rates for all the events in
the model are defined. It’s important to note that each rate is required to have a unique name,
i.e., an identifier. As mentioned before, each firing rate can be assigned either a constant value
or a function.

• Events: In this section, all events present in the model must be described. For each event,
its type (local or synchronizing) and name are specified, as well as which identifier its firing
rate corresponds to. Each event firing rate is associated with the identifier for that specific
rate or to a function that represents a functional transition rate.

• Partial Reachability: This is the section where the reachability function is specified. It is
basically a boolean function that returns 1 if the state is reachable and 0 in case it is not.
The word partial indicates that the expression used for describing the set of reachable states
encompasses only part of states, not all of them. The software tool is able to discover the
remaining reachable states starting from the given set and generate the complete reachability
function.

The expression defined in this section can also be seen as the definition of the starting state
of each automaton. Since not all global states are reachable, the combination of the starting
states is specified to be surely reachable. In other words, it is guaranteed that at least this
global state is known to be a reachable state in the model.

• Network: In this section of the .san file, the model itself must be described. Therefore,
the name of the model is defined, along with the time scale being used (PEPS only supports
continuous models). Then, all of the automata in the model are specified using a hierarchical
structure. It includes names, states, and the transitions associated with their corresponding
firing rates for each automaton. An example of how states and transitions are defined can be
seen in Chapter 3.7.

24

CHAPTER 3. RELATED WORK AND THEORETICAL FOUNDATION 3.3. PEPS 2000

• Results: In this section, the functions for obtaining the performance indexes intended for the
model, i.e. integration functions, are defined. The results of these functions will indicate the
probability of the model to be in that state or set of states defined by the function.

3.3.2 Shuffle Algorithm

The main increasing technique implemented in this version was a vector-descriptor multi-
plication method proposed by Fernandes [20] named Shuffle algorithm.

The Vector-Descriptor product is one of the most important operations to achieve both
stationary and transient solutions for models described by Kronecker structured formalisms using
iterative methods. The Shuffle algorithm was implemented to perform this kind of operation in the
model. In this method each part of the probability vector is multiplied by a tensor product term,
never generating any part of the full matrix. After all multiplications are done, we have a complete
vector-matrix multiplication.

Essentially, it consists in exploiting the property of decomposing a tensor product into the
ordinary product of tensor products in a normal form.

Q(1) ⊗ ...⊗Q(N) = (Q(1) ⊗ In2 ⊗ ...⊗nN−1 ⊗InN)

(In1 ⊗Q(2) ⊗ ...⊗ InN−1 ⊗ InN)×

.

.

.

(In1 ⊗ In2 ⊗ ...⊗Q(N−1) ⊗ InN)×

(In1 ⊗ In2 ⊗ ...⊗ InN−1 ⊗Q(N) (3.1)

Rewriting the basic operation of the vector-descriptor product, i.e., the required number
of multiplications of vector v by a tensor product of N matrices, according to this property:

v ×
[∏N

i=1 Inlefti ⊗Q(i) ⊗ Inrighti

]
(3.2)

where nleft corresponds to the product of the order of all matrices before the i th matrix of
the tensor product term, i.e., ∏i−1

k=1 nk (particular case: nleft1 = 1) and nrighti corresponds to the
product of the order of all matrices after the i th matrix of the tensor product term, i.e., ∏N

k=i+1 nk

(particular case: nrightN = 1) [21].
This way, In other words, the Shuffle algorithm consists in the successive multiplication of

a vector by each normal factor. In fact, vector v is multiplied by the normal factor, then the resulting
vector is multiplied by the normal factor again, and so on until the last factor. The multiplication

25

CHAPTER 3. RELATED WORK AND THEORETICAL FOUNDATION 3.4. PEPS 2003

of a vector v by the i th normal factor is equivalent to shuffle the elements of v in order to assemble
nlefti × nrighti vectors of size ni and multiply them by matrix Q(i). So, assuming the matrix Q(i)

is stored as a sparse matrix, the number of multiplications necessary to multiply a vector by the i th

normal factor is:
nlefti × nrighti × nzi (3.3)

where nzi is the number of nonzero elements of the i th matrix of the tensor product term Q(i).
Considering the number of multiplications to all normal factors of a tensor product term, the result
is [14, 21]:

N∏
i=1

ni ×
N∑

i=1

nzi

nI
(3.4)

The reader may find extensive material in the literature [14] in regards to memory and
CPU efficiency of the Shuffle algorithm.

3.4 PEPS 2003

Another version of the tool was released in the year 2003 with some improvements over
PEPS2000 version:

3.4.1 Lex/Yacc Compiler

One of the new features that PEPS2003 brought was a new interface compiler. It became
more intuitive and compact and implemented some basic replication features to describe identical
automata and queueing structures.

The elements of the new compiler as a whole, such as the grammar and the algorithms
used to parse the input were generated through the use of existing specialized tools. The lexical
symbols of the grammar and the rules applied in the lexical analysis performed by the compiler, such
as splitting the source file into tokens, were generated by Lex [3] tool. The rules applied on finding
the hierarchical structure of the program, i.e. the syntactic analysis, were defined using Yacc [5]
tool. Hence, the new compiler for the 2003 version was implemented based on the use of Lex and
Yacc tools.

3.4.2 Integration Functions

The final steps of the Shuffle algorithm, implemented in the 2000 version, were responsible
for calculating the probability of the model being in each global state and populate the probability
vector. In that sense, one of the new implemented features for this version was the integration

26

CHAPTER 3. RELATED WORK AND THEORETICAL FOUNDATION 3.5. PEPS 2007

functions. As mentioned previously, these functions sum the product of each row of the probability
vector containing all the global states in order to obtain the results. Since not all global states will
necessarily be reachable, some of these probabilities will be zero. This feature improved the quality
of the analysis that could be performed on the model solved by extracting performance indexes and
created room for more accurate conclusions.

3.5 PEPS 2007

PEPS2007 is the latest version of the software tool. It is currently available for the
academic community [10] and it contains some of the newest features implemented in the tool,
namely:

3.5.1 Modularized Software Structure

In this version, a new software structure was adopted in order to improve PEPS mainte-
nance and development, since the project would keep getting bigger and more complex throughout
the time. The new structure divided PEPS2007 into a set of individual modules. Each model im-
plemented a part of the compiling/solution procedures. Basically, PEPS modules were assembled in
three groups: Interface, Data Structure, and Solution Methods.

With this approach, it was possible to develop and test new methods independently of
the software stable version. In other words, different versions could be developed in a locally
and/or logically distributed way, without any particular care about eventual bug corrections and
improvements in other parts of PEPS software.

3.5.2 New Compiler

The development team came up with some improvements for the compiler in the 2007
version. It was meant to facilitate the description of more complex models with replicated automata,
or states inside an automaton. It kept the full backward compatibility with PEPS2003 and it was
based on the previous version interface.

The two main differences were the ability to replicate not only identical structures, but also
automata and states with different transitions, events, and rates (with the restriction that replicated
automata must have the same cardinality, i.e. same number of states), and the actual implemen-
tation of lexical, syntactic and semantic analysis of the compiler. For this version, instead of using
Lex/Yacc generators, the entire grammar, as well as syntax and sematic rules were reimplemented
manually using C++ programming language.

27

CHAPTER 3. RELATED WORK AND THEORETICAL FOUNDATION 3.6. PEPS 2009

3.5.3 Bounding Methods

Tensor algebra can be used in SAN to store large Markov Chains in a compact format.
However, in some cases it is still hard to compute the model solution for really huge models and
calculating the exact performance indexes becomes not feasible. The new feature in PEPS2007,
Bounding algorithms [23], can be used to obtain upper or lower bounds of performance in Markov
Chains. This method reduces the Markov Chain transition matrix to a smaller monotone matrix. It
was implemented in this version in such a way that the software tool generates a monotone upper
bounding matrix directly from the Markovian Descriptor that represents the SAN model.

3.5.4 Automata Aggregation

Automata aggregation in SAN is meant to reduce the number of automata in the model,
bringing some numerical benefits to the solution. According to the method described by Benoit et
al. [7], a group of fully identical automata, i.e. , automata with the exact same number of states,
transitions and rates, may be aggregated into a single automaton where each state represents the
number of grouped automata in each of the states.

Among the numerical benefits that were brought with this feature, it is convenient to note
the theoretical and practical results, which were a quite significant decrease of total state space and
reduced memory usage, respectively.

Alongside with the reduction of the total state space, additional benefits consequently
come up, such as the elimination of some functional rates and unreachable states. It occurs because
of the nature of the aggregation methods, which basically groups automata that are connected to
the same state(s) into only one automaton.

There were essentially two aggregation methods for SAN formalism. The algebraic aggre-
gation method uses properties of the generalized tensor algebra to reduce the number of automata
and the semantic aggregation method is based on the relationship among replicated automata [7].

3.6 PEPS 2009

In 2009, some new features were proposed, aiming to improve the solving process in general
with new techniques. However, these features have not been fully implemented in the software tool,
therefore this version has never been published and it is not available for the scientific community.

The proposed features for this version, which are still under development, are described
hereafter:

28

CHAPTER 3. RELATED WORK AND THEORETICAL FOUNDATION 3.6. PEPS 2009

3.6.1 Reachable State Space Efficient Generation

A Multi-valued Decision Diagram (MDD) [24] is a compact structure that allows us to
store and to manipulate large sets of structured information in a compact format. The information
in a model can be structured by N components (or subsystems, i.e. , in our case, automata) where
these components have some independent behavior and occasional interdependency.

Basically a MDD is a directed acyclic edge-labeled multi-graph, where there are some
specific properties, such as: (i) nodes are organized into N + 1 levels, where N represents the
number of subsystems; (ii) level N has only one single non-terminal node (known as the root),
whereas levels N − 1 through 1 have one or more non-terminal nodes; (iii) level 0 has two terminal
nodes: 0 and 1; (iv) a non-terminal node p at level l contains nl arcs pointing to nodes at level
l − 1, where nl indicates the number of local states of l-th subsystem; (v) there are not duplicate
nodes, i.e. , nodes at a same level are unique.

Fig. 3.6 illustrates a MDD which represents the state space S, subset of a cross-product
of a system splitted in four subsystems (i.e. , N = 4), where S(i) represents the local state space of
the i-th subsystem.

10

4

3 3 3

2 2

1 1

1

3 0

2

0

1
2

1 0

2

2

1

0

0 1

0

1

1

00 1

Level 4

S = { 0, 1, 2, 3 }
(4)

Level 3

S = { 0, 1, 2 }
(3)

Level 2

S = { 0, 1 }
(2)

Level 1

S = { 0, 1 }
(1)

Level 0

S = { 0010, 0210, 2010 }

Figure 3.6 – A state space S represented by a MDD

In Fig. 3.6, non-terminal nodes are depicted by circles and terminal nodes are depicted by
squares. A given state x of the system is composed by the combination of the local states of each
subsystem, i.e. , x = x (N) ... x (1) of S is element of a subset represented by a N-level MDD if and
only if the path through the MDD, starting at the level-N node, following downward pointer x (l) at
level l , reaches terminal node 1. Dashed arcs and nodes are paths which lead only to terminal node
0 and in the rest of the paper, for reasons of clarity, will be omitted.

29

CHAPTER 3. RELATED WORK AND THEORETICAL FOUNDATION 3.6. PEPS 2009

Also, MDD can be used to represent a set S of integer tuples by storing the characteristic
function fS of the set. Therefore sets can be manipulated using operations over MDDs on their
characteristic functions (e.g., the operation union on sets corresponds to disjunction on MDDs).

Saturation-based state-space generation is a successful symbolic method based on MDDs
applied to generating state spaces of structured models, e.g., Stochastic Petri Nets (SPN) models
[12,13,28].

Sales and Plateau [32] presented an extension of the saturation method described in [12],
which allows the use of functional transitions, i.e. , the interaction between automata can be
represented by a function. Functions can be associated to rates or routing probabilities on the
events. In this case, the rate or the routing probabilities of an event can have different values in
function to the state of other automata.

The main idea of the generation method is to compute the reachable space state (RSS)
of the model by the successive firing of events from an initial state while the RSS is stored in a
MDD. The method exploits the possibility of firing any event that affects a given MDD node and
its descendant nodes, thus bringing the node to its saturated format. Besides, nodes are considered
in a bottom-up fashion (i.e. , when a node is computed, all its descendant nodes are already in the
saturated format). A node is considered as saturated if it encodes a set of states which are a fixed
point in regards to the firing of any event at its level or at a lower level.

Fig. 3.7 shows a small SAN model with three automata (N = 3) and the corresponding
RSS of this model re presented by a MDD, generated from initial state 000.

SAN model

A

0

12

C

0

12

0

B

1

S2
l1

l4

l2 S1

l3

S1

S2

syn 4S
2

(st A == 1) x 3

l
2

loc

loc l
1

syn

Type

l
3

1

loc

loc

Event

7

S
1

(st C == 2) x 2l
4

Rate

5

RSS encoded by MDD

C

B B B

A A A

1

0
1

2

0 1

1

0
1

1

2

0 10 1

Figure 3.7 – RSS of the SAN model represented by a MDD

Functions are a powerful feature in the SAN formalism, since it allows us to represent very
complex behaviors of a system in a very compact format. Moreover, the usage of MDDs to generate
the RSS of a SAN model, which uses functions (having a small domain size), allows us to achieve
the generation of large reachable state spaces with a small computational time, while keeping a low
memory consumption.

30

CHAPTER 3. RELATED WORK AND THEORETICAL FOUNDATION3.7. FILE (.SAN) EXAMPLE

3.6.2 Split Algorithm

SAN schemes that model real scenarios are naturally sparse: That’s because the tensor
sum structures generally make the local portion of the descriptor very sparse. Also, the synchronizing
events make the descriptor quite sparse, since they are mostly used to describe exceptional behaviors.

The Split algorithm [14] allows each tensor product of matrices to be partitioned into two
different groups: one with more sparse matrices and the other with more nonzero elements. This
way, the Sparse algorithm [15] could be applied to the first group generating Additive Unitary normal
Factor (AUNF). An AUNF is composed of three elements: a scalar value obtained by multiplying
one nonzero element of each matrix in the Sparse-like part by each other; an input slice, which is a
part of the vector v identified by the line row coordinates i of the nonzero elements multiplied; and
an output slice, as a part of the vector v identified by the column coordinates j of the multiplied
elements [14]. Each of the generated AUNF must then be multiplied (tensor product) by the second
group of matrices using the Shuffle algorithm, as Slice handles only the first matrix in this case.

Considering this concept, the goal is to split the tensor terms into two sets of matrices and
deal with them in different ways, almost individually. Therefore, the Split algorithm is considered
a generalization for the encompassing all possibilities from a pure Sparse approach until the Shuffle
algorithm, once it follows the idea of breaking the system into distinct parts to be dealt with.

In regards of efficiency, a deeply detailed material may be found in the literature [14],
explaining the memory and CPU efficiency of the Split algorithm, as well as Sparse and Slice
algorithms. Additionally, some optimizations on the Split algorithm were proposed by Czekster,
Fernandes, and Webber in [15], in case the reader is interested.

3.7 File (.san) Example

In order to make the way PEPS tool works more explicit to the reader, this chapter presents
an example of a .san file, along with its compilation and execution processes.

The code shown in Code 3.1 is a demonstrative example of the .san file that describes the
SAN model depicted in Fig. 3.5, containing all of the components presented in Chapter 3.3.1 of
this document.
identifiers

//rates = per minute
r_proc = 6;
r_more = 5;
r_no_more = 1;
r_req = 6;
r_resp = 5;

F1 = (st Client == Working) * 1;

31

CHAPTER 3. RELATED WORK AND THEORETICAL FOUNDATION 3.8. USAGE

events

loc l_proc (r_proc);
loc l_more (r_more);
loc l_no_more (r_no_more);
loc l_wait (F1);
syn s_req (r_req);
syn s_resp (r_resp);

// Both Client and Server start in idle.
partial reachability = ((st Client == Idle)

&& (st Server == Idle));

network ClientServer (continuous)

aut Client
stt Idle to (Transmitting) s_req
stt Transmitting to (Receiving) s_resp
stt Receiving to (Working) l_proc
stt Working to (Transmitting) l_more

to (Idle) l_no_more

aut Server
stt Idle to (Receiving) s_req
stt Receiving to (Transmitting) s_resp
stt Transmitting to (Idle) l_wait

results

Client_requesting = (st Client == Transmitting);
Client_receiving = (st Client == Receiving);
Client_processing = (st Client == Working);
Client_trans_Serv_rcv = ((st Client == Transmitting)

&& (st Server == Receiving));
Client_recv_Serv_trans = ((st Client == Receiving)

&& (st Server == Transmitting));
Client_idle = (st Client == Idle);
Server_idle = (st Server == Idle);

Code 3.1 – Example of the SAN file for Client-Server model

For this example, the performance indexes that the user expects to know are specified in
the results section, i.e. , the probability of the Client being requesting, receiving, and processing.
Besides, the percentage of the time the Client is transmitting data and the Server is receiving data
and vice-versa are also desired results. At last, the percentage of time that both Client and Server
are idle.

3.8 Usage

An example of usage of the software tool is shown in this chapter. Both compilation
and resolution of the .san file presented in the previous chapter can be seen in Fig. 3.8. For this

32

CHAPTER 3. RELATED WORK AND THEORETICAL FOUNDATION3.9. SUPPORTED MODELS

demonstration, the compilation process does not make use of any aggregation method [7] and the
resolution process uses the Power Method [26] to solve the model2.

Figure 3.8 – Compilation and resolution of the Client-Server SAN model

According to the output of the system, shown in the right hand side of Fig. 3.8, the
probability of both Client and Server to be idle is less than fifteen percent, which means that, for
these parameters, the model presents satisfying results in regards to occupancy, for the Server is not
under used nor overloaded.

3.9 Supported Models

In regards to the previous versions that have been developed along the years since PEPS
project started, some criteria have been defined in order to evaluate the capabilities of the tool when
running different types of stochastic models.

Since Markovian models can easily become large and complex, the project team defined as
reasonable analysis criteria the total size of the model itself, i.e. , the number of states or Product
State Space (PSS), and the total memory used to solve the model, considering how big the matrixes
and internal structures grow, and finally the total execution time spent to solve the model.

2PEPS versions of 2003, 2007, and obviously 2015 also offer the possibility to perform stationary solutions using
also Arnoldi and GMRES methods, and also transient solution using Uniformization methods [34].

33

CHAPTER 3. RELATED WORK AND THEORETICAL FOUNDATION3.9. SUPPORTED MODELS

Some of the types of models that have been proven to be supported by the tool are
presented in Table 3.1. It presents the numerical results considering the analysis criteria mentioned
above in order to show that the tool can handle the models within reasonable time and space limits
for each published version of the tool.

Table 3.1 – PEPS numerical results
PEPS
version Model PSS Memory

Used
Time

to Solve

2000 General Resource
Sharing [17] 1,084,576 590 Bytes 33 sec.

2003 FAS - First Server
Available [8] 33,554,432 11.2 KB 5.47 min.

2007 Master-Slave
Parallel Program [6,14] 65,367,200 38.54 KB 8.92 min.

Based on the presented data, it is interesting to note that the number of states in the
network seems to be the driving factor for the final solution time. For the latest version of the tool
(PEPS2007), the execution time is fairly reasonable, although it bit longer, for it resolves a model
with almost twice as many states as the previous version, using an acceptable amount of memory.

34

CHAPTER 4. PROJECT DESCRIPTION

4. PROJECT DESCRIPTION

4.1 Architecture

For the new version of PEPS, the architecture will remain fully compatible with the previous
version of the tool. All software components stay in their place like before, but some of them do
not perform the same tasks anymore.

Some of the components involved in PEPS2015 software architecture, which can be ob-
served in Figure 4.1, had their behavior changed, as well the data flow in some of the processes in
order to achieve the objectives described earlier in this document.

Figure 4.1 – PEPS2015 Architecture

First, the SAN model is described in a .san file according to the rules mentioned previously.
Then PEPS takes the file as input and compiles each section of the file.

When parsing the file, it splits the content into tokens that go through the lexical, syntactic,
and semantic analysis. These tokens are also used to store the functions present in the model. Until
PEPS2007, they used to be stacked to represent the functions in a reverse-polish notation. From
now on, the compilations of the functions is one of the software components that will be changed.

The Reachable State Space is currently calculated manually by using arrays of booleans
to determine whether each state is reachable or not. The use of Multi-Valued Diagrams is yet to be
implemented.

35

CHAPTER 4. PROJECT DESCRIPTION 4.2. TECHNOLOGY

The Just-in-Time function evaluation is responsible for translating the functions defined
in the model into C-coded functions that will be called in runtime. It produces a shared object to be
linked with PEPS and generate the executable. The biggest change for the new version is focused
in this specific part.

Once the model is compiled, we have the a tensor representation of the descriptor for the
matrix that corresponds to the Markovian infinitesimal generator. This way, we only need to store
the descriptor, instead of the entire matrix.

The solution module makes use of the reachable states, as well as the functions translated
into C code by the jit module and applies the numerical iterative methods to solve the model based
in the generated descriptor and the algorithm that is used, populating the probability vector as an
output.

In the final step, the integration functions consider the values of the probability vector
to produces the final results for the expected outputs that were specified for the model in order to
calculate performance indexes.

4.2 Technology

In this section, we talk about the technology used in the development of the software tool:

4.2.1 Programming Language

Technology-wise, the software tool implements the communication between the internal
modules via object oriented programming, using C++ programming language. Apart from that, basic
input/output operations involving files and standard IO through Linux/Unix terminal are mplemented
as well.

4.2.2 Environment

In regards to compatibility, PEPS package has been tested and proven to be currently
compatible with the following platforms:

1. Linux - Ubuntu 14.04 64 bits

2. MacOS X 10.8.2 - Mountain Lion

3. MacOS X 10.9.2 - Mavericks

4. MacOS X 10.10.2 - Yosemite

36

CHAPTER 4. PROJECT DESCRIPTION 4.3. PEPS 2015 - NEW FEATURES

5. MacOS X 10.11.1 - El Capitan

However, since the source code of PEPS is available upon request, the compilation and
availability for other platforms is likely to be a simple task.

4.3 PEPS 2015 - New Features

The main contribution of this work relies on adding some new features to meet the objec-
tives mentioned previously. In that sense the latest version of the software tool, PEPS2015, aims to
allow models that have never been supported before because of stack issues to be supported now
and improve total memory usage. We intend to get it done by working around the use of the stack
to store the functional rates and getting rid of the temporary data structures also used for that
purpose. A more detailed explanation is presented hereafter.

4.3.1 C Functions

Just-in-Time Functions

One of PEPS features that was implemented in the 2007 version is the so-called Just-in-
Time functions. Basically, when the compiler parses the functions defined in the .san file for the
functional transition rates in the model, it uses a Stack-based data structure to store all tokens
involved to form each function. Then, once all functions are stored in the internal data structures,
a .jit file is created, containing the translation of those functions into functions written in C pro-
gramming language, i.e. , C-coded functions. The jit file is then linked to GCC to produce a shared
object that will compound the executable file in a way that the C functions will be called whenever
they need to be evaluated in runtime.

However, as described in Chapter 2, the way this feature is currently implemented creates
some limitations for the tool capabilities. The program not ony uses a stack to store the tokens,
but it also store them in temporary data structures, as shown in Figure 2.1.

More specifically, the program uses a function dictionary that store the valid token identi-
fiers of the functions defined in the SAN model. Besides, it also uses a temporary list of tokens to
control when the function ends, as tokens keep being processed one by one, so the program knows
which token is the final one for that function. There is also a table of function trees. A function
tree is a list of tokens that compound one function of the model. So, the table contains a list of all
functions of the model in the form of token lists.

The functions are actually translated into C code and sent to the jit file only after the
table of function trees contains all of the functions present in the model. That takes a large amount
of memory in compile time and, more importantly, the fact that tokens are stacked up to form

37

CHAPTER 4. PROJECT DESCRIPTION 4.3. PEPS 2015 - NEW FEATURES

functions implies that the amount of functions in the model and the size of those functions will
determine if the model can be handled by the tool or not, for it depends on the size of the stack
the program uses to store them.

Proposed solution

The proposed solution intends to change the way the compiler parses functional rates and
stores them internally to generate the jit file. It is also expected that some additional benefits will
come along with the implemented solution.

First of all, since the JIT module in PEPS architecture ultimately generates C coded
functions from the original functions defined in the SAN model, we thought it would be more
reasonable to let the modeler describe the functional rates in the SAN file using C programming
language directly. This way, not only all of the intermediate translation steps would no longer be
necessary, but it would also allow the modeler to write his/her own algorithms, using C language
resources, such as sort algorithms, etc. With that in mind, of the expected additional benefts is
facilitate the modeling process, regarding function design, and the understanding of the functions
defined for the model.

For example, it is much easier for the modeler to use a switch-case clause from C language
instead of specifying each and every single condition with if statements, as it is currently defined
in the .san file. Additionaly, when the function is evaluated, only one verification will be performed
with the switch-case clause, instead of n verifications for n if statements, therefore even some minor
performance improvements are expected.

In order to make it work, the internal structure of PEPS has to be slightly changed. Since
the functions will be written in C language, we need to modify the compiler. So, some elements
were added to enable PEPS compiler to recognize C code, such as a new grammar for C specific
symbols, as well as a new parser with syntactic and semantic rules. It is important to point that the
new compiler was based on the compiler implemented in the 2007 version, without using Lex/Yacc.
Additionally, the .san file now has a new section that comes right after the identifiers section, called
functions. This is where the new C functions will be coded in order to be recognized by the compiler.

Once the compiler is now able to parse proper C code directly from the input file, we
needed to find a way of dealing with the C functions internally in order to create the jit file just as
it was done before. We then realized that since we already have C code, there is no need to use any
temporary data structure to do any sort of translation process. We could just froward the C code
to an output stream that, once all functions are copied, could be written directly in the jit file.

It seemed like a good approach, but there was one issue. Even though the function
code was written in C language, the conditions would still have to check the automata states, and
obviously there is nothing in C language to do that. So, we had to find a way of interpreting
some SAN-specific symbols in the middle of the C code to resolve that issue. Then, those specific

38

CHAPTER 4. PROJECT DESCRIPTION 4.3. PEPS 2015 - NEW FEATURES

symbols from the SAN grammar were added to the new compiler and the correct information about
the current state of each automata would come from acessing the network dictionary.

The network dictionary is one of PEPS internal data structures that store data about the
structure of the model itself. When the network section of the .san input file is parsed, this dictionary
is filled with all relevant information regarding the network structure of the model (description of
automata, states, and transitions).

Figure 4.2 – Network dictionary

Basically, the network dictionary is composed of four lists to store the model, as shown in
Figure 4.2:

• id: Each position of this list stores the name of an identifier.

• aut: Each position of this list stores the index of the automaton that the identifier belongs
to.

• type: Each position of this list indicates the type of the identifier, whether it is an automaton
identifier or a state identifier.

• stt: Each position of this list indicates the index of the state inside the automaton that state
belongs to. For automaton identifiers, the value is disregarded.

For the sake of the example, Figure 4.2 contains a model with three automata, named R,
G, and Y, each with three states, named A, B and C, being state A indexed as 0, state B indexed
as 1, and state C with index 2 inside each automaton.

So, by acessing the network dictionary, it was possible to resolve the issue with specific
SAN grammar elements. To make it clearer for the reader, here is another example:

39

CHAPTER 4. PROJECT DESCRIPTION 4.3. PEPS 2015 - NEW FEATURES

Let’s assume a function called reset, that triggers an event in a transition only if the state
of automaton A is 1 and the state of automaton B is 1.

The SAN function, as defined in PEPS2007 would be:

reset = ((st A == 1)&&(st B == 1)) ∗ 1

In PEPS2015, the C code for that function would be:

double reset(< parameters >){ if ((A == 1)&&(B == 1)) return 1; else return 0}

This is only meant to exemplify how SAN grammar specific elements that do not exist in
C syntax would have to be dealt with, such as st and automata names, in this case A and B. The
symbol st was added to the grammar and both the automata names and the values of the states
being checked would have to be searched on the network dictionary.

So, by searching for the values on the same index in all four lists contained in the dictionary,
it is possible to know if an identifier is valid, what kind of identifier we are dealing with, which
automaton it belongs to, and, in case it’s a state, the index of that state in the automaton.

This way, it became straightforward to generate a new jit file with the same C functions as
before, but using a much faster and simpler process. However, there was still one remaining issue.

Since the final output of the tool is given in the form of probabilities, all of the values
calculated during the execution of the program have to be normalized, i.e. , transformed into
equivalent values within the [0.0, 1.0] range. In that sense, one of the calculated values during the
process is the normalizing factor. It is stored in one of the files generated by the compilation process
and it must be applied to the functions in order to work properly.

This is why the program has to parse the input file more than once. In the first pass, it
stores the identifiers present in the model and the structure of the network itself. The second time
it passes through the model, the network structure is already mapped internally and the necessary
values are calculated, such as the normalizing factor. Since the network structure has to be stored
internally to process the functional rates associated to transition events between states properly, a
third pass was added to the compiling process, which is when the C functions are actually parsed,
containing all necessary values.

The files created by the compiling process are:

• DES: stores all information concerning the network structure.

• DSC: stores the internal descriptor of the model.

• CND: stores the normalized descriptor (contains the normalizing factor).

So, in order to resolve the normalizing factor issue, we had to generate a partial jit file, with
not-normalized functions. It was called not-normalized jit file and it contains all of the C functions
with an invalid token (character “?") for the value of the normalizing factor. This not-normalized jit

40

CHAPTER 4. PROJECT DESCRIPTION 4.3. PEPS 2015 - NEW FEATURES

file is then created right before the creation of those three files mentioned above, once the compiling
process is over.

After those files are all created, we know the normalized factor was already calculated and
stored internally in the tool. So, we could reopen the not-normalized jit file, find the invalid token
(question mark symbol) intentionally put there as the normalizing factor, and finally replace it with
the actual value of the normalizing factor calculated for the model, to which we have access at this
point because it was calculated during the compilation process. This way, a second and final jit file,
called normalized jit, was generated to replace the old one and still work the same way.

GCC is called to compile the new jit file and produce the shared object to be linked with
PEPS and generate the executable module. Function evaluation is still done as efficiently as before.

By making these modifications, we were able to meet the goal of not using the stack
anymore to store functions, because we no longer use token lists or function trees. The C code is
directly parsed and saved to a stream that is later on written in the jit file. These adjustments in
the structure and data flow also eliminated the need of using temporary data structures to store the
tokens and build the functions. So, it is expected that models that were not supported before due
to stack limitation or memory overflow issues can now be handled by the software tool.

4.3.2 Example of the new .san file

In this example, we are modeling the Tower of Hanoi problem with three discs. There are
three automata, equivalent to the discs, R for the the red and smallest disc, G for the green medium
disc, and Y for the yellow biggest disc. Each of these automata have three states, A, meaning that
the disc is inserted in the left pole A, B meaning the disc is in the middle pole B, and C that stands
for the right pole C.

Basically, the three discs start on the top of each other, biggest at the bottom, medium
and smallest on the top, all inserted into the left pole A. Only the disc on the top can be switched
from one pole to another at a time. The goal is to move all three discs from pole A to pole C
without ever putting a disc on the top of a smaller disc.

Figure 4.3 depicts the scenario explained above.

Figure 4.3 – Example of Hanoi Tower

41

CHAPTER 4. PROJECT DESCRIPTION 4.3. PEPS 2015 - NEW FEATURES

Figures 4.4 and Code 4.1 show examples of the SAN model for the Hanoi Tower example
and the .san file that describes it in the new format, respectively, with the proposed modifications.

Figure 4.4 – Example of Hanoi Tower - SAN model

identifiers

RallRate = 3;
GabRate = (st R == C);
GacRate = (st R == B);
GbcRate = (st R == A);
YabRate = ((st R == C) && (st G == C));
YacRate = ((st R == B) && (st G == B));
YbcRate = ((st R == A) && (st G == A));

functions

double GacRate(const int * states){
double res;
double norm_factor = ?;
if(st R == B){

res = 1;
}
else{

res = 0;
}
res = res * norm_factor;
return res;

}

double GabRate(const int * states){
double res;
double norm_factor = ?;
if(st R == C){

res = 1;
}
else{

res = 0;
}
res = res * norm_factor;
return res;

}

42

CHAPTER 4. PROJECT DESCRIPTION 4.3. PEPS 2015 - NEW FEATURES

double GbcRate(const int * states)
{

double res;
double norm_factor = ?;
if(st R == A)

res = 1;
else

res = 0;
res = res * norm_factor;
return res;

}

double YacRate(const int * states)
{

double res;
double norm_factor = ?;
if((st R == B) && (st G == B))
{

res = 1;
}
else
{

res = 0;
}
res = res * norm_factor;
return res;

}

double YabRate(const int * states)
{

double res;
double norm_factor = ?;
if((st R == C) && (st G == C))
{

res = 1;
}
else
{

res = 0;
}
res = res * norm_factor;
return res;

}

double YbcRate(const int * states)
{

double res;
double norm_factor = ?;
if((st R == A) && (st G == A))
{

res = 1;
}
else
{

res = 0;
}
res = res * norm_factor;
return res;

}

43

CHAPTER 4. PROJECT DESCRIPTION 4.3. PEPS 2015 - NEW FEATURES

events

loc Rall (RallRate);
loc Gac (GacRate);
loc Gab (GabRate);
loc Gbc (GbcRate);
loc Yac (YacRate);
loc Yab (YabRate);
loc Ybc (YbcRate);

reachability = ((st R == A) && (st G == A) && (st Y == A));

network hanoi (continuous)

aut R
stt A to (B) Rall

to (C) Rall
stt B to (A) Rall

to (C) Rall
stt C to (A) Rall

to (B) Rall

aut G
stt A to (B) Gab

to (C) Gac
stt B to (A) Gab

to (C) Gbc
stt C to (A) Gac

to (B) Gbc

aut Y
stt A to (B) Yab

to (C) Yac
stt B to (A) Yab

to (C) Ybc
stt C to (A) Yac

to (B) Ybc

results
t_A = ((st R == A) && (st G == A) && (st Y == A));
t_B = ((st R == B) && (st G == B) && (st Y == B));
t_C = ((st R == C) && (st G == C) && (st Y == C));

Code 4.1 – Example of the SAN file for Hanoi tower model

44

CHAPTER 5. PRACTICAL CAPABILITIES

5. PRACTICAL CAPABILITIES

5.1 Analysis Criteria

Based on the analysis criteria defined before to test the previous versions capabilities, the
same model tested in PEPS2007 version was tested in the new version to be sure that the new
implementation works and verify eventual performance improvements. The results are presented in
Table 5.1

Table 5.1 – PEPS2015 numerical results
PEPS
version Model PSS Memory

Used
Time

to Solve

2000 General Resource
Sharing [17] 1,084,576 590 Bytes 33 sec.

2003 FAS - First Server
Available [8] 33,554,432 11.2 KB 5.47 min.

2007 Master-Slave
Parallel Program [6,14] 65,367,200 38.54 KB 8.92 min.

2015 Master-Slave
Parallel Program [6,14] 65,367,200 29.12 KB 8.84 min.

As it can be observed, the new implementation of the tool did reduce the total amount
of memory used, as expected. We believe that the reduction of approximately 24.44% is mostly
because of the new compiling process and the runtime should still be using about the same amount
of memory as before. The results also show that the new implementation still supports previously
supported models.

5.2 Test Scenarios

5.2.1 Hanoi Tower

In this setion, we present the tests done on the old and new versions of the Hanoi Tower
scenario shown before. The scenario was modeled for PEPS2007 using the old grammar and also for
PEPS2015 with the new format. The model was then executed in both versions and the expected
results are the same stationary solution for both models, indicating that the numeric algorithms can
still solve the model the same way, using the new C functions defined by the modeler in project time.

The compilation and execution of both models are shown in Figures 5.1, 5.2, 5.3, and 5.4.

45

CHAPTER 5. PRACTICAL CAPABILITIES 5.2. TEST SCENARIOS

Figure 5.1 – Compilation of the Hanoi Tower SAN model in PEPS2007

Figure 5.2 – Resolution of the Hanoi Tower SAN model in PEPS2007

5.2.2 Discrete Spatial Mobile Node Distribution

46

CHAPTER 5. PRACTICAL CAPABILITIES 5.2. TEST SCENARIOS

Figure 5.3 – Compilation of the Hanoi Tower SAN model in PEPS2015

One of the models that users have been trying to solve for a long time using PEPS software
tool is the Discrete Spatial Mobile Node Distribution [16]. It consists in finding a suitable mobility
model for packages to travel across computer wireless networks. In other words, the main problem
to be resolved in this model is finding an optimal path for the signal to travel from one waypoint to
another given a spatial node distribution. More details about the model problem itself can be found
in [16].

The reason why this model could not be supported so far is the exactly problem identified
in this work, which we intended to solve. Because of the very large number of complex functions
that were modeled to represent this scenario, the stack would overflow whenever the model was
attempted to be solved.

With the new implementation, this model is very likely to be supported by the 2015 version.
Unfortunately, we could not execute the stochastic model in SAN to PEPS2015 because the model
itself was not published, only the description of the problem itself is available. But, according to
the authors, it becomes unsolvable when the Spatial Node Distribution is done in a 20x20 area with
varied pauses on transmission, forming a non-convex polygon. This would be the desired test for the
new implementation, but it is estimated that the model is highly likely to be supported by PEPS2015
version.

A truly useful and important future work that can be done on this version is modeling
this scenario and confirm whether it works indeed or it still remains unsupported due to memory
limitations.

47

CHAPTER 5. PRACTICAL CAPABILITIES5.3. RESULTS AND VALIDATION OF IMPLEMENTED FEATURES

Figure 5.4 – Resolution of the Hanoi Tower SAN model in PEPS2015

5.3 Results and Validation of Implemented Features

According to the output shown in Figures 5.1, 5.2, 5.3, and 5.4, we were eable to validate
the implemented features, since the resolution process still achieves the stationary solution for the
model, using the new just-in-time functions.

48

CHAPTER 5. PRACTICAL CAPABILITIES5.3. RESULTS AND VALIDATION OF IMPLEMENTED FEATURES

The results presented in 5.1 also confirm the new implementation is fairly acceptable and
the expected benefits for the tool were obtained. Additionaly, as a positive side effect, we have
made the modeling process simpler and more intuitive for the user of PEPS tool.

49

CHAPTER 6. FUTURE WORK

6. FUTURE WORK

6.1 Symbolic Solution

One significant feature that could be added to the software tool in the future is the
Symbolic Solution, described in [18]. According to the authors, by making use of tensor algebra
principles, it is expected that much larger and complex models would be resolved without increasing
the execution time and memory usage all that much.

The main concept of the symbolic solution is to deal with the tensor representation of the
infinitesimal generator by adding terms to perform Gauss-Jordan Elimination steps. The concept of
functional elements is highly important for the method to deal with particular cases of the tensor
structure and keep the symbolic operations simple enough to be handled.

The first step for the proposed symbolic solution is to prepare the matrix by performing
the Gauss-Jordan method to obtain the infinitesimal generator. Once this process is done, the tensor
representation of the starting of the Gauss-Jordan method will be:

Q(0) =
N−1⊕
i=0

Q(i)
l +

∑
s∈S

N−1⊗
i=0

Q(i)
s+ +

∑
s∈S

N−1⊗
i=0

Q(i)
s− +

N−1⊗
i=0

Q(i)
lc (6.1)

The second step is to perform the matrix triangulation, in which the elements below the
diagonal are eliminated through he application of the Gauss-Jordan to each row. The row scaling
operations correspond to include functional elements to perform the necessary scale operation to
each product of the descriptor. Once the matrix triangulation is complete, it is computationally
simpler to store the tensor structure and execute the final step: perform a backward substitution
procedure to resolve the system of linear equations. More detailed information about the method
itself is presented by Fernandes, Lopes and Yeralan in [18].

6.1.1 Meaningful Test Scenario

For future implementations, one model that is known to have a very large state space and
could be tested to look for performance improvements is the Unreliable Production Lines model [19].

Also, as mentioned before, Chapter 3.6.1 describes one important feature to calculate
the reachable state space of the model in a more sophisticated way. In Chapter 5.2.2, another
meaningful test scenario is presented, for it could be used to validate the improvements on the tool
made by this project.

50

CHAPTER 7. CONCLUSION

7. CONCLUSION

Fig. 1.1 summarizes the general vision of the PEPS2015 software high level modules, as
well as types of data and data flow involved in the compiling/solving process. In the figure, the left
hand side shows the input of PEPS 2015, a textual .san file describing a specific SAN model, and the
right hand side shows the final output: the results computed by applying the integration functions to
the computed probability vector, i.e. , the quantitative estimations concerning the modeled reality.
The three main modules of PEPS 2015 are the Compile, Solve and Integrate modules.

The Compile module performs a translation of a SAN model into an MDD description
of the Reachable State Space, a tensor representation of transition matrix (descriptor), and the
integration functions responsible to deliver the quantitative results. It comprises two specialized
submodules, one responsible for generating the MDD representation of the RSS, and the other
responsible for generating the just-in-time (jit) functions for the tensor representation and the inte-
gration functions.

The Solve module implements all iterative numeric methods available in the tool to try
to solve the model, namely Power, Arnoldi, GMRES and Uniformization, offering Shuffle and Split
algrithms for vector-descriptor multiplications. This module can be seen as the most sensitive module
in terms of computational efficiency, in terms of both CPU and memory usage, since it performs the
operations for achieving the stationary solution.

Finally, the Integration module is the simplest and most straightforward module, since
it essentialy visits the Reachable State Space, computing the integration functions and weighing
results from the probabilities computed beforehand.

PEPS software tool is a live project, hence there is constantly ongoing work to add new
features and keep improving it by seeking for even better techniques for vector-descriptor multipli-
cation to speed up both transient and stationary numerical solutions, as well as more sophisticated
structures for reachable state space manipulation. The new features proposed in this work led to a
new version of PEPS as the core contribution for the project.

At the end of this project, we appreciate all the acquired knowledge about the subject.
We had the chance of going deep into the details of analytical modeling and explore the methods
and techniques that have been developed along the years by talented researchers in the past.

We were satisfied with the results because the initial objectives that had been set were
achieved, improving the software tool usage and execution and hopefully opening up some opportu-
nities for even better future implementations.

The contribution for the academic community is something truly valuable for us and the
research pratice performed along this project was worth the effort. The article published in the 31st
UK Performance Engineering Workshop, held in 17 September 2015 in Leeds [22], is the clearest
proof of it. We are glad to be part of the scientific community and wll surely keep working hard to
contribute even more in the future.

51

CHAPTER 7. CONCLUSION

As new techniques are proposed in the future, they may result in newer and optimized ver-
sions of PEPS tool. The interested researcher and practitioner may find more thorough information
about PEPS project in general in the webpage http://www-id.imag.fr/Logiciels/peps/.

52

REFERENCES REFERENCES

REFERENCES

[1] “J. J. O’Connor and E. F. Robertson. MacTutor History of Mathematics., http://www-gap.
dcs.st-and.ac.uk/history/mathematicians/markov.html, Accessed: October, 2015”.

[2] “KRONOS, http://www-verimag.imag.fr/dist-tools/tempo/kronos/, Accessed: May, 2015”.

[3] “Lex - A Lexical Analyzer Generator, http://dinosaur.compilertools.net/lex/, Accessed:
September, 2015”.

[4] “UPPAAL, http://www.uppaal.org/, Accessed: May, 2015”.

[5] “Yacc: Yet Another Compiler-Compiler, http://dinosaur.compilertools.net/yacc/, Accessed:
September, 2015”.

[6] Baldo, L.; Brenner, L.; Fernandes, L. G.; Fernandes, P.; Sales, A. “Performance Models
For Master/Slave Parallel Programs”, Electronic Notes in Theoretical Computer Science, vol.
128–4, 2005, pp. 101 – 121, proceedings of the First International Workshop on Practical
Applications of Stochastic Modelling (PASM 2004) Practical Applications of Stochastic
Modelling 2004.

[7] Benoit, A.; Brenner, L.; Fernandes, P.; Plateau, B. “Aggregation of Stochastic Automata
Networks with Replicas”, Linear Algebra and its Applications, vol. 386, 2004, pp. 111–136.

[8] Benoit, A.; Brenner, L.; Fernandes, P.; Plateau, B.; Stewart, W.
“The peps software tool” . In: Computer
Performance Evaluation. Modelling Techniques and Tools, Kemper, P.; Sanders, W. (Editors),
Springer Berlin Heidelberg, 2003, Lecture Notes in Computer Science, vol. 2794, pp. 98–115.

[9] Brenner, L. “Agregação em Redes de Autômatos Estocásticos”, Ph.D. Thesis, Pontifícia
Universidade Católica do Rio Grande do Sul, 2004.

[10] Brenner, L.; Fernandes, P.; Plateau, B.; Sbeity, I. “PEPS2007 - Stochastic Automata Networks
Software Tool.” In: QEST, 2007, pp. 163–164.

[11] Bujorianu, L. M. “Stochastic reachability analysis of hybrid systems”. Springer Science &
Business Media, 2012.

[12] Ciardo, G.; Lüttgen, G.; Miner, A. S. “Exploiting Interleaving Semantics in Symbolic State-
Space Generation”, Formal Methods in System Design, vol. 31–1, 2007, pp. 63–100.

[13] Ciardo, G.; Lüttgen, G.; Siminiceanu, R. “Saturation: an Efficient Iteration Strategy for
Symbolic State—Space Generation”. Springer, 2001.

53

REFERENCES REFERENCES

[14] Czekster, R. M.; Fernandes, P.; Vincent, J.-M.; Webber, T. “Split: a flexible and efficient
algorithm to vector-descriptor product”. In: Proceedings of the 2nd international conference on
Performance evaluation methodologies and tools, 2007, pp. 83.

[15] Czekster, R. M.; Fernandes, P.; Webber, T. “Efficient Vector-Descriptor Product Exploiting
Time-Memory Trade-offs”, ACM SIGMETRICS Performance Evaluation Review, vol. 39–3,
2011, pp. 2–9.

[16] Dotti, F. L.; Fernandes, P.; Nunes, C. M. “Structured markovian models for discrete spatial
mobile node distribution”, Journal of the Brazilian Computer Society, vol. 17–1, 2011, pp.
31–52.

[17] Fernandes, P. “Méthodes numériques pour la solution de systèmes Markoviens à grand espace
d’États”, Ph.D. Thesis, Institut National Polytechnique de Grenoble, France, 1998.

[18] Fernandes, P.; Lopes, L.; Yeralan, S. “Symbolic Solution of Kronecker-based Structured
Markovian Models”. In: Modeling, Analysis & Simulation of Computer and Telecommunication
Systems (MASCOTS), 2013 IEEE 21st International Symposium on, 2013, pp. 409–413.

[19] Fernandes, P.; O’Kelly, M.; Papadopoulos, C. T.; Sales, A. “Analysis of Exponential Unreliable
Production Lines using Kronecker Descriptors”, 9th Stochastic Models of Manufacturing and
Service Operations (SMMSO 2013), 2013.

[20] Fernandes, P.; Plateau, B.; Stewart, W. J. “Efficient Descriptor-Vector Multiplication in
Stochastic Automata Networks”, Journal of the ACM (JACM), vol. 45–3, 1998, pp. 381–414.

[21] Fernandes, P.; Presotto, R.; Sales, A.; Webber, T. “An Alternative Algorithm to Multiply
a Vector by a Kronecker Represented Descriptor”. In: 21st UK Performance Engineering
Workshop, 2005, pp. 57–67.

[22] Fernandes, P.; Sales, A.; Zani, L. “Peps2015-stochastic automata networks software tool”. In:
31st UK Performance Engineering Workshop 17 September 2015, 2015, pp. 9.

[23] Fourneau, J.-M.; Plateau, B.; Sbeity, I.; Stewart, W. “Sans and lumpable stochastic bounds:
Bounding availability”, Computer System, Network Performance and Quality of Service, 2004,
pp. xxxx.

[24] Kam, T.; Villa, T.; Brayton, R. “Multi-Valued Decision Diagrams: Theory and Applications”,
Multiple-Valued Logic, –4, 1998.

[25] Kleinrock, L. “Queueing Theory”. John Wiley, 1979.

[26] Langville, A. N.; Stewart, W. J. “The Kronecker Product and Stochastic Automata Networks”,
Journal of computational and applied mathematics, vol. 167–2, 2004, pp. 429–447.

54

REFERENCES REFERENCES

[27] Marsan, M. A.; Balbo, G.; Conte, G.; Donatelli, S.; Franceschinis, G. “Modelling with
generalized stochastic Petri nets”. John Wiley & Sons, Inc., 1994.

[28] Miner, A. S.; Ciardo, G. “Efficient Reachability Set Generation and Storage Using Decision
Diagrams”. In: Application and Theory of Petri Nets 1999, Springer, 1999, pp. 6–25.

[29] Plateau, B.; Fourneau, J.-M.; Lee, K.-H. “PEPS: A package for solving complex Markov models
of parallel systems”. Springer, 1989.

[30] Plateau, B.; Stewart, W. J. “Stochastic Automata Networks”. In: Computational Probability,
Springer, 2000, pp. 113–151.

[31] Saad, Y. “Iterative Methods for Sparse Linear Systems”. Siam, 2003.

[32] Sales, A.; Plateau, B. “Reachable State Space Generation for Structured Models Which
Use Functional Transitions”. In: Quantitative Evaluation of Systems, 2009. QEST’09. Sixth
International Conference on the, 2009, pp. 269–278.

[33] Stewart, W. J. “Numerical Solution of Markov Chains”. vol. 8.

[34] Uysal, E.; Dayar, T. “Iterative Methods Based on Splittings for Stochastic Automata Networks”,
European Journal of Operational Research, vol. 110–1, 1998, pp. 166–186.

55

