The dentin chemical degradation and saliva roles on Noncarious Cervical Lesions – literature review
DOI:
https://doi.org/10.15448/1980-6523.2017.4.28634Keywords:
diet, gastroesophageal reflux, saliva, tooth erosion, tooth wear.Abstract
This review elucidates the dental structure chemical degradation and saliva roles in the origin and progression of NCCLs. Dentin chemical degradation is a predominant factor that contributes to the origin and progression of noncarious cervical lesions, which includes the biocorrosive factors: chemical, biochemical, electrochemical and piezoelectric dentin effects. The biocorrosive process involves endogenous and exogenous agents. As regard to saliva roles, the flow rate, buffering capacity, pH and its protein composition are valid parameters to identify biocorrosive factors. Thus, the association of acids agents, altered salivary parameters and specifics proteases are important conditions to promote dental wear. It can be concluded that endogenous and exogenous acids agents, salivary parameters and specific oral biomarkers are important to support the diagnostic and management of dental wear and noncarious cervical lesions.
References
Pecie R, Krejci I, Garcia-Godoy F, Bortolotto T. Noncarious cervical lesionsa clinical concept based on the literature review. Part 1: prevention. Am J Dent 2011; 24:49-56.
Grippo JO, Simring M, Coleman TA. Abfraction, abrasion, biocorrosion, and the enigma of noncarious cervical lesions: a 20-year perspective. J Esthet Restor Dent 2012; 24:10-23. https://doi.org/10.1111/j.17088240.2011.00487.x
Michael JA, Townsend GC, Greenwood LF, Kaidonis JA. Abfraction: separating fact from fiction. Aust Dent J 2009; 54:2-8. https://doi.org/10.1111/j.1834-7819.2008.01080.x
Nguyen C, Ranjitkar S, Kaidonis JA, Townsend GC. A qualitative assessment of non-carious cervical lesions in extracted human teeth. Aust Dent J. 2008; 53:46-51. https://doi.org/10.1111/j.1834-7819.2007.00009.x
Levitch LC, Bader JD, Shugars DA, Heymann HO. Non-carious cervical lesions. J Dent 1994; 22:195-207. https://doi.org/10.1016/0300-5712(94)90107-4
Grippo JO. Abfractions: a new classification of hard tissue lesions of teeth. J Esthet Dent 1991; 3:14-9. https://doi.org/10.1111/j.1708-8240.1991.tb00799.x
Lussi A, Jaeggi T. Erosion-diagnosis and risk factors. Clin Oral Investig 2008; 12:5-13. https://doi.org/10.1007/s00784-007-0179-z
Khan F, Young WG, Shahabi S, Daley TJ. Dental cervical lesions associated with occlusal erosion and attrition. Aust Dent J 1999; 44:176 86. https://doi.org/10.1111/j.1834-7819.1999.tb00219.x
Eisenburger M, Addy M. Influence of liquid temperature and flow rate on enamel erosion and surface softening. J Oral Rehabil 2003; 30: 1076-80. https://doi.org/10.1046/j.1365-2842.2003.01193.x
Litonjua LA, Andreana S, Patra AK, Cohen RE. An assessment of stress analyses in the theory of abfraction. Biomed Mater Eng 2004; 14:311-21.
Soares PV, Souza LV, Veríssimo C, Zeola LF, Pereira AG, Santos-Filho, PC, Fernandes-Neto AJ. Effect of root morphology on biomechanical behaviour of premolars associated with abfraction lesions and different loading types. J Oral Rehabil 2014; 41:108-14. https://doi.org/10.1111/joor.12113
Schlueter N, Ganss C, Pötschke S, Klimek J, Hannig C. Enzyme activities in the oral fluids of patients suffering from bulimia: a controlled clinical trial. Caries Res 2012; 46:130-9. https://doi.org/10.1159/000337105
Marsicano JA, de Moura-Grec PG, Bonato RC, Sales-Peres Mde C, Sales-Peres A,Sales-Peres SH. Gastroesophageal reflux, dental erosion, and halitosis in epidemiological surveys: a systematic review. Eur J Gastroenterol Hepatol 2013; 25:135-41. https://doi.org/10.1097/MEG.0b013e32835ae8f7
Needleman I, Ashley P, Petrie A, Fortune F, Turner W, Jones J, Niggli J, Engebretsen L, Budgett R, Donos N, Clough T , Porter S. Oral health and impact on performance of athletes participating in the London 2012 Olympic Games: a cross-sectional study. Br J Sports Med 2013; 47: 1054-8. https://doi.org/10.1136/bjsports-2013-092891
Grippo JO, Simring M, Schreiner S. Attrition, abrasion, corrosion and abfraction revisited: a new perspective on tooth surface lesions. J Am Dent Assoc 2004; 135:1109-18. https://doi.org/10.14219/jada.archive.2004.0369
Featherstone JD, Lussi A. Understanding the chemistry of dental erosion. Monogr Oral Sci 2006; 20:66-76. https://doi.org/10.1159/000093351
Young WG, Khan F. Sites of dental erosion are saliva-dependent. J Oral Rehabil 2002; 29:35-43. https://doi.org/10.1046/j.13652842.2002.00808.x
Kanzow P, Wegehaupt FJ, Attin T, Wiegand A. Etiology and pathogenesis of dental erosion. Quintessence Int 2016; 47:275-8.
Shen P, Walker GD, Yuan Y, Reynolds C, Stacey MA, Reynolds EC. Food acid content and erosive potential of sugar-free confections. Aust Dent J 2017;20. https://doi.org/10.1111/adj.12498
Stefanski T, Postek-Stefanska L. Possible ways of reducing dental erosive potential of acidic beverages. Aust Dent J 2014; 59:280-8. https://doi.org/10.1111/adj.12201
Barron RP, Carmichael RP, Marcon MA, Sàndor GK. Dental erosion in gastroesophageal reflux disease. J Can Dent Assoc 2003; 69:84-9.
Ranjitkar S, Smales RJ, Kaidonis JA. Oral manifestations of gastroesophageal reflux disease. J Gastroenterol Hepatol 2002; 27: 21-7. https://doi.org/10.1111/j.1440-1746.2011.06945.x
Su JM, Tsamtsouris A, Laskou M. Gastroesophageal reflux in children with cerebral palsy and its relationship to erosion of primary and permanent teeth. Journal of the Massachusetts Dental Society 2003; 52:20-24.
Marshall TA. Dietary assessment and counseling for dental erosion. J Am Dent Assoc 2018; 149:148-152. https://doi.org/10.1016/j.adaj.2017.11.006
Tahmassebi JF, Duggal MS, Malik-Kotru G , Curzon ME. Soft drinks and dental health: a review of the current literature. J Dent 2006; 34:2-11. https://doi.org/10.1016/j.jdent.2004.11.006
Meurman JH, Ten Cate JM. Pathogenesis and modifying factors of dental erosion. Eur J Oral Sci 1996; 104:199-206. https://doi.org/10.1111/j.1600-0722.1996.tb00068.x
Saxegaard E, Rolla G. Fluoride acquisition on and in human enamel during topical application in vitro. Scand J Dent Res 1988; 96:523-35. https://doi.org/10.1111/j.1600-0722.1988.tb01592.x
Nieuw Amerongen AV, Oderkerk CH, Driessen AA. Role of mucins from human whole saliva in the protection of tooth enamel against demineralization in vitro. Caries Res 1987; 21:297-309. https://doi.org/10.1159/000261033
Enberg N, Alho H, Loimaranta V. Lenander-Lumikari M. Saliva flow rate, amylase activity, and protein and electrolyte concentrations in saliva after acute alcohol consumption. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2001; 92:292-8. https://doi.org/10.1067/moe.2001.116814
Botta SB, Ana PA, Santos MO, Zezell DM, Matos AB. Effect of dental tissue conditioners and matrix metalloproteinase inhibitors on type I collagen microstructure analyzed by Fourier transform infrared spectroscopy. J Biomed Mater Res B Appl Biomater 2012; 100:1009-16. https://doi.org/10.1002/jbm.b.32666
Dreizen S, Brown LR, Daly TE, Drane JB. Prevention of xerostomia-related dental caries in irradiated cancer patients. J Dent Res 1977; 56:99-104. https://doi.org/10.1177/00220345770560022101
Valena V, Young WG. Dental erosion patterns from intrinsic acid regurgitation and vomiting. Aust Dent J 2002; 47:106-15.
Hall HD. Protective and maintenance functions of human saliva. Quintessence Int 1993; 24:813-6.
Yandrapu H, Marcinkiewicz M, Poplawski C, Han K, Zbroch T, Goldin G, Sarosiek I, Namiot Z, Sarosiek J. Role of saliva in esophageal defense: implications in patients with nonerosive reflux disease. Am J Med Sci 2015; 349:385-91. https://doi.org/10.1097/MAJ.0000000000000443
Saksena R, Bartlett DW, Smith BG. The role of saliva in regurgitation erosion. Eur J Prosthodont Restor Dent 1999; 7:121-4.
Buzalaf MA, Hannas AR, Kato MT. Saliva and dental erosion. J Appl Oral Sci 2012; 20:493-502. https://doi.org/10.1590/S1678-77572012000500001
Lussi A, Jaeggi T, Zero D. The role of diet in the aetiology of dental erosion. Caries Res 2004; 38:34-44. https://doi.org/10.1159/000074360
Mishra P, Palamara JE, Tyas MJ, Burrow MF. Effect of static loading of dentin beams at various pH levels. Calcif Tissue Int 2006; 79:416-21.
https://doi.org/10.1007/s00223-005-0271-9
Dawes C. What is the critical pH and why does a tooth dissolve in acid? J Can Dent Assoc 2003; 69:722-4.
Lussi A, Von Salis-Marincek M, Ganss C, Hellwig E, Cheaib Z, Jaeggi T. Clinical study monitoring the pH on tooth surfaces in patients with and without erosion. Caries Res 2012; 46:507-12. https://doi.org/10.1159/000339783
Tabak LA. Point-of-care diagnostics enter the mouth. Ann N Y Acad Sci 2007; 1098:7-14. https://doi.org/10.1196/annals.1384.043
Pereira AL, Cortelli SC, Aquino DR, Franco GC, Cogo K, Rodrigues E, Costa FO, Holzhausen M, Cortelli JR. Reduction of salivary arginine catabolic activity through periodontal therapy. Quintessence Int 2012; 43:777-87.
Oppenheim FG, Salih E, Siqueira WL, Zhang W, Helmerhorst EJ. Salivary proteome and its genetic polymorphisms. Ann N Y Acad Sci 2007; 1098:22-50. https://doi.org/10.1196/annals.1384.030
Rai B, Kaur J, Anand SC, Jacobs R. Salivary stress markers, stress, and periodontitis: a pilot study. J Periodontol 2011; 82:287-92. https://doi.org/10.1902/jop.2010.100319
Güncü GN, Yilmaz D, Könönen E, Gürsoy UK. Salivary Antimicrobial Peptides in Early Detection of Periodontitis. Front Cell Infect Microbiol 2015; 24:5-99. https://doi.org/10.3389/fcimb.2015.00099
Bedran-Russo AK, Pereira PN, Duarte WR, Okuyama K, Yamauchi M. Removal of dentin matrix proteoglycans by trypsin digestion and its effect on dentin bonding. J Biomed Mater Res B Appl Biomater 2008; 85:261-6. https://doi.org/10.1002/jbm.b.30944
Schlueter N, Ganss C, Hardt M, Schegietz D, Klimek J. Effect of pepsin on erosive tissue loss and the efficacy of fluoridation measures in dentine in vitro. Acta Odontol Scand 2007; 65:298-305. https://doi.org/10.1080/00016350701678733
Saksena R, Bartlett DW, Smith BG. The role of saliva in regurgitation erosion. Eur J Prosthodont Restor Dent 1999; 7:121-4.
Dung SZ, Li Y, Dunipace AJ, Stookey GK. Degradation of insoluble bovine collagen and human dentine collagen pretreated in vitro with lactic acid, pH 4.0 and 5.5. Arch Oral Biol 1994; 39:901-5. https://doi.org/10.1016/0003-9969(94)90022-1
Mishra P, Palamara JE, Tyas MJ, Burrow MF. Effect of static loading of dentin beams at various pH levels. Calcif Tissue Int 2006; 79:416-21. https://doi.org/10.1007/s00223-005-0271-9
Kuboki Y, Tsuzaki M, Sasaki S, Liu CF, Mechanic GL. Location of the intermolecular cross-links in bovine dentin collagen, solubilization with trypsin and isolation of cross-link peptides containing dihydroxylysinonorleucine and pyridinoline. Biochem Biophys Res Commun 1981; 102:119-26. https://doi.org/10.1016/0006291X(81)91497-2
Walter C, Kress E, Götz H, Taylor K, Willershausen I, Zampelis A. The anatomy of non-carious cervical lesions. Clin Oral Investig 2014; 18: 139-46. https://doi.org/10.1007/s00784-013-0960-0
Schlueter N, Hardt M, Klimek J, Ganss C. Influence of the digestive enzymes trypsin and pepsin in vitro on the progression of erosion in dentine. Arch Oral Biol 2010; 55:294-9. https://doi.org/10.1016/j.archoralbio.2010.02.003
Marino AA, Gross BD. Piezoelectricity in cementum, dentine and bone. Arch Oral Biol 1989; 34:507-9. https://doi.org/10.1016/00039969(89)90087-3
Liboff AR, Shamos MH. Piezoelectric effect in dentin. J Dent Res 1971; 50:516. https://doi.org/10.1177/00220345710500027901
Downloads
Published
Issue
Section
License
COPYRIGHT
The submission of originals to Odonto Ciência implies the transfer by the authors of the right for publication. Authors retain copyright and grant the journal right of first publication. If the authors wish to include the same data into another publication, they must cite Odonto Ciência as the site of original publication.
CREATIVE COMMONS LICENSE
As this journal is open access, the articles are allowed free use in scientific and educational applications, with citation of the source.
According to the type of Creative Commons License (CC-BY 4.0) adopted by Odonto Ciência, the user must respect the requirements below.
You are free to:
Share — copy and redistribute the material in any medium or format.
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
However, only under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests Odonto Ciência endorses you or your use.
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.
For more details on the Creative Commons license, please follow the link in the footer of this website.