Evaluation of therapeutic potency of human papillomavirus-16 E7 DNA vaccine alone and with interleukin-18 as a genetic adjuvant

Behzad Pourhossein, Amir Ghaemi, Maryam Fazeli, Kayhan Azadmanesh, Mahmood Mahmoodi, Abbas Mirshafiey, Shohreh Shahmahmoodi


AIMS: Despite the existence of effective preventive vaccines for human papillomavirus (HPV), therapeutic vaccines that trigger cell-mediated immune responses are required to treat established infections and malignancies. The aim of this study was to evaluate the therapeutic potency of HPV-16 E7 deoxyribonucleic acid (DNA) vaccine alone and with interleukin (IL)-18. 

METHODS: In vitro expressions of IL-18 were performed on human embryonic kidney 293 cells and confirmed it by Western blotting methods. DNA vaccine was available from a previous study. A total of 45 female C57BL/6 mice divided into five groups (DNA vaccine, DNA vaccine adjuvanted with IL-18, pcDNA3.1, and phosphate buffer saline) were inoculated with murine tissue culture-1 cell line of HPV related carcinoma, expressing HPV-16 E6/E7 antigens. They were then immunized subcutaneously twice at a seven-day interval. The antitumor and antigen specific-cellular immunity were assessed by lymphocyte proliferation (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide: MTT) assay, lactate dehydrogenase release assay, IL-4 assay and interferon-gamma (IFN-γ) assay. Tumor size was followed for 62 days.

RESULTS: MTT assay, which measures the lymphocyte proliferation in response to the specific antigen, increased in the co-administration and the DNA vaccine groups as compared to control and genetic adjuvant groups (p<0.001). The mice immunized with the co-administration generated significantly more IFN-γ and IL-4 than other immunized mice (p<0.001). Reduction of the tumor size in the co-administration and the DNA vaccine groups was significantly more pronounced than in the control and genetic adjuvant groups (p<0.001), but no statistically significant difference between DNA vaccine and co-administration groups (p=0.15) occurred.

CONCLUSIONS: IL-18 as a genetic adjuvant and E7 DNA vaccine alone enhanced immune responses in mouse model systems against cervical cancer. However, using of IL-18 as a genetic adjuvant with E7 DNA vaccine had no significant synergistic effect on the immune responses in vivo.


cellular immunity, human papillomavirus; oncogene protein, interleukin-18.

Full Text:



Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray, F. GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11 [Internet]. Lyon, France: International Agency for Research on Cancer; 2013 [cited 2018 Jan 31]. Available from: http://globocan.iarc.fr

Zur Hausen H. Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer. 2002;2(5):342-50. https://doi.org/10.1038/nrc798

Kadaja M, Silla T, Ustav E, Ustav M. Papillomavirus DNA replication from initiation to genomic instability. Virol. 2009;384(2):360-8. https://doi.org/10.1016/j.virol.2008.11.032

Finzer P, Aguilar-Lemarroy A, Rösl F. The role of human papillomavirus oncoproteins E6 and E7 in apoptosis. Cancer lett. 2002;188(1):15-24. https://doi.org/10.1016/S0304-3835(02)00431-7

Toussaint-Smith E, Donner DB, Roman A. Expression of human papillomavirus type 16 E6 and E7 oncoproteins in primary foreskin keratinocytes is sufficient to alter the expression of angiogenic factors. Oncogene. 2004;23(17):2988-95. https://doi.org/10.1038/sj.onc.1207442

Todorovic B, Hung K, Massimi P, Avvakumov N, Dick FA, Shaw GS, Banks L, Mymryk JS. Conserved region 3 of human papillomavirus 16 E7 contributes to deregulation of the retinoblastoma tumor suppressor. J virol. 2012;86(24):13313-23. https://doi.org/10.1128/JVI.01637-12

Fabbi M, Carbotti G, Ferrini S. Context-dependent role of IL-18 in cancer biology and counter-regulation by IL-18BP. J Leukoc Biol. 2015;97(4):665-75. https://doi.org/10.1189/jlb.5RU0714-360RR

Jin H, Li Y, Ma Z, Zhang F, Xie Q, Gu D, Wang B. Effect of chemical adjuvants on DNA vaccination. Vaccine. 2004;22(21):2925-35. https://doi.org/10.1016/j.vaccine.2003.12.026

Liu MA. DNA vaccines: an historical perspective and view to the future. Immunol Rev. 2011;239(1):62-84. https://doi.org/10.1111/j.1600-065X.2010.00980.x

Gableh F, Saeidi M, Hemati S, Hamdi K, Soleimanjahi H, Gorji A, Ghaemi A. Combination of the toll like receptor agonist and alpha-Galactosylceramide as an efficient adjuvant for cancer vaccine. J Biomed Sci. 2016;23(1):16-27. https://doi.org/10.1186/s12929-016-0238-3

Sajadian A, Tabarraei A, Soleimanjahi H, Fotouhi F, Gorji A, Ghaemi A. Comparing the effect of Toll-like receptor agonist adjuvants on the efficiency of a DNA vaccine. Arch Virol. 2014;159(8):1951-60. https://doi.org/10.1007/s00705-014-2024-4

Wang Q, Yu H, Ju D, He L, Pan J, Xia D, Zhang L, Cao X. Intratumoral IL-18 gene transfer improves therapeutic efficacy of antibody-targeted superantigen in established murine melanoma. Gene Ther. 2001;8(7):542-50. https://doi.org/10.1038/sj.gt.3301428

Akamatsu S, Arai N, Hanaya T, Arai S, Tanimoto T, Fujii M, Kohno K, Micallef MJ, Ikeda M, Kurimoto M. Antitumor activity of interleukin-18 against the murine T-cell leukemia/lymphoma EL-4 in syngeneic mice. J Immunother. 2002;25:S28-S34. https://doi.org/10.1097/00002371-200203001-00005

Osaki T, Péron J-M, Cai Q, Okamura H, Robbins PD, Kurimoto M, Lotze MT, Tahara H. IFN-γ-inducing factor/IL-18 administration mediates IFN-γ-and IL-12-independent antitumor effects. J Immunol. 1998;160(4):1742-9.

Zhang Y, Li Y, Ma Y, Liu S, She Y, Zhao P, Jing M, Han T, Yan C, Wu Z, Gao J, Ye L. Dual effects of interleukin-18: inhibiting hepatitis B virus replication in HepG2. 2.15 cells and promoting hepatoma cells metastasis. Am J Physiol Gastrointest Liver Physiol. 2011;301(3):G565-G73. https://doi.org/10.1152/ajpgi.00058.2011

Coughlin CM, Salhany KE, Wysocka M, Aruga E, Kurzawa H, Chang AE, Hunter CA, Fox JC, Trinchieri G, Lee WM. Interleukin-12 and interleukin-18 synergistically induce murine tumor regression which involves inhibition of angiogenesis. J Clin Invest. 1998;101(6):1441-52. https://doi.org/10.1172/JCI1555

Ghaemi A, Soleimanjahi H, Gill P, Hassan Z, Jahromi SRM, Roohvand F. Recombinant λ-phage nanobioparticles for tumor therapy in mice models. Genet Vaccines Ther. 2010;8(1):3-10. https://doi.org/10.1186/1479-0556-8-3

Tahamtan A, Ghaemi A, Gorji A, Kalhor HR, Sajadian A, Tabarraei A, Moradi A, Atyabi F, Kelishadi M. Antitumor effect of therapeutic HPV DNA vaccines with chitosan-based nanodelivery systems. J Biomed Sci. 2014;21(1):69-79. https://doi.org/10.1186/s12929-014-0069-z

Fazeli M, Soleimanjahi H, Ghaemi A, Farzanepour M, Amanzadeh A, Hashemi SR. Efficacy of HPV-16 E7 based vaccine in a TC-1 tumoric animal model of cervical cancer. Cell J. 2011;12(4):483-8.

Gableh F, Saeidi M, Hemati S, Hamdi K, Soleimanjahi H, Gorji A, Ghaemi A. Combination of the toll like receptor agonist and α-Galactosylceramide as an efficient adjuvant for cancer vaccine. J Biomed Sci. 2016;23(1):16-27. https://doi.org/10.1186/s12929-016-0238-3

Garnett MC. Gene-delivery systems using cationic polymers. Crit Rev Ther Drug Carrier Syst. 1999;16(2):147-207. https://doi.org/10.1615/CritRevTherDrugCarrierSyst.v16.i2.10

Tindle R, Frazer I. Immune response to human papillomaviruses and the prospects for human papillomavirus-specific immunisation. Human pathogenic papillomaviruses. New York: Springer; 1994.

Šmahel M, Šíma P, Ludvíková V, Vonka V. Modified HPV16 E7 genes as DNA vaccine against E7-containing oncogenic cells. Virol. 2001;281(2):231-8. https://doi.org/10.1006/viro.2000.0794

Bahrami AA, Ghaemi A, Tabarraei A, Sajadian A, Gorji A, Soleimanjahi H. DNA vaccine encoding HPV-16 E7 with mutation in LYCYE pRb-binding motif induces potent anti-tumor responses in mice. J Virol Methods. 2014;206:12-18. https://doi.org/10.1016/j.jviromet.2014.05.013

Fazeli M, Soleimanjahi H, Dadashzadeh S. Further stimulation of cellular immune responses through association of HPV-16 E6, E7 and L1 genes in order to produce more effective therapeutic DNA vaccines in cervical cancer model. Iran J Cancer Prev. 2015;8(1):18.

Soleimanjahi H, Razavinikoo H, Fotouhi F, Ardebili A. Antitumor Response to a Codon-Optimized HPV-16 E7/HSP70 Fusion Antigen DNA Vaccine. Iran J Immunol. 2017;14(3):180-91.

Kaser A, Kaser S, Kaneider NC, Enrich B, Wiedermann CJ, Tilg H. Interleukin-18 attracts plasmacytoid dendritic cells (DC2s) and promotes Th1 induction by DC2s through IL-18 receptor expression. Blood. 2004;103(2):648-55. https://doi.org/10.1182/blood-2002-07-2322

Lee SJ, Cho YS, Cho MC, Shim JH, Lee KA, Ko KK, Choe YK, Park SN, Hoshino T, Kim S, Dinarello CA, Yoon DY. Both E6 and E7 oncoproteins of human papillomavirus 16 inhibit IL-18-induced IFN-γ production in human peripheral blood mononuclear and NK cells. J Immunol. 2001;167(1):497-504. https://doi.org/10.4049/jimmunol.167.1.497

Zhu M, Xu X, Liu H, Liu X, Wang S, Dong F, Yang B, Song G. Enhancement of DNA vaccine potency against herpes simplex virus 1 by co-administration of an interleukin-18 expression plasmid as a genetic adjuvant. J Med Microbiol. 2003;52(3):223-8. https://doi.org/10.1099/jmm.0.04998-0

Cho YS, Kang JW, Cho M, Cho CW, Lee S, Choe YK, Kim YM, Choi IP, Park SN, Kim SH, Dinarello CA, Yoon DY. Down modulation of IL‐18 expression by human papillomavirus type 16 E6 oncogene via binding to IL‐18. FEBS Lett. 2001;501(2-3):139-45. https://doi.org/10.1016/S0014-5793(01)02652-7

Kang YH, Lee KA, Yang Y, Kim HS, Kim HJ, Park NS, Paik SG, Yoon DY. The apoptotic effect of intercalating agents on HPV-negative cervical cancer C-33A cells. Amino Acides. 2007;33(1):105-12. https://doi.org/10.1007/s00726-006-0417-8

Robertson MJ, Mier JW, Logan T, Atkins M, Koon H, Koch KM, Kathman S, Pandite LN, Oei C, Kirby LC, Jewell RC, Bell WN, Thurmond LM, Weisenbach J, Roberts S, Dar MM. Clinical and biological effects of recombinant human interleukin-18 administered by intravenous infusion to patients with advanced cancer. Clin Cancer Res. 2006;12(14):4265-73. https://doi.org/10.1158/1078-0432.CCR-06-0121

Tarhini AA, Millward M, Mainwaring P, Kefford R, Logan T, Pavlick A, Kathman SJ, Laubscher KH, Dar MM. A phase 2, randomized study of SB‐485232, rhIL‐18, in patients with previously untreated metastatic melanoma. Cancer. 2009;115(4):859-68. https://doi.org/10.1002/cncr.24100

Nakahira M, Ahn H-J, Park W-R, Gao P, Tomura M, Park C-S, et al. Synergy of IL-12 and IL-18 for IFN-γ gene expression: IL-12-induced STAT4 contributes to IFN-γ promoter activation by up-regulating the binding activity of IL-18-induced activator protein 1. The Journal of Immunology. 2002;168(3):1146-53. https://doi.org/10.4049/jimmunol.168.3.1146

Tominaga K, Yoshimoto T, Torigoe K, Kurimoto M, Matsui K, Hada T, et al. IL-12 synergizes with IL-18 or IL-1β for IFN-γ production from human T cells. International immunology. 2000;12(2):151-60. https://doi.org/10.1093/intimm/12.2.151

DOI: http://dx.doi.org/10.15448/1980-6108.2018.3.30555

e-ISSN: 1980-6108 | ISSN-L: 1806-5562

Except where otherwise specified, material published in this journal is licensed under a Creative Commons Attribution 4.0 International license, which allows unrestricted use, distribution and reproduction in any medium, provided the original publication is correctly cited.