Low-grade intraventricular hemorrhage and neurodevelopment at 24 months of age

Sara Peixoto, Joana Amaral, Cristina Resende, Dolores Faria, Adelaide Taborda


AIMS: To evaluate the impact of low-grade intraventricular hemorrhage on neurodevelopmental outcome in preterm infants at 24 months of age.

METHODS: We conducted a retrospective case-control study of infants with gestational age less than 34 weeks, admitted to a Neonatal Intensive Care Unit between January/2006 and December/2015. Cases were defined as those with low-grade intraventricular hemorrhage (grades I or II), diagnosed by cranial ultrasonography. For each case, a control with the same gestational age but without intraventricular hemorrhage was selected. Follow-up examinations of neurodevelopment were performed at 24 months of age in cases and controls using the Griffiths Mental Development Scale. Cerebral palsy, neurodevelopmental delay (developmental quotient <2 side deviations below the mean), hearing impairment and/or blindness were considered as severe neurodevelopmental impairment.

RESULTS: The study included 172 preterm infants: 86 cases and 86 controls. In the univariate analysis, a difference between the two groups was identified for the following clinical findings: antenatal corticosteroid complete cycle (57% in cases vs. 80% in controls; p=0.001; OR: 0.33, 95%CI 0.17-0.64); male gender (63% cases vs. 41% controls; p=0.004; OR: 2.45, 95%CI 1.3-4.5); outborn (26% cases vs. 9% controls; p=0.005; OR: 3.3 95%CI 1.4-8.0); Clinical Risk Index for Babies higher than 5 (24% in cases vs. 12% in controls; p=0.029; OR: 2.4 95%CI 1.1-5.6); intubation in the delivery room (47% cases vs. 27% controls; p=0.007; OR: 2.38 95%CI 1.3-4.5); and neonatal sepsis (34% in cases vs. 20% in controls; p=0.039; OR: 2.1 95%CI 1.03-4.1). After logistic regression, differences were only maintained for antenatal corticosteroid (p=0.005; OR 0.34, 95%CI 0.16-0.72) and male gender (p=0.002; OR 2.9, 95%CI 1.4-5.8). A severe neurodevelopmental deficit was present in three cases (3.5%) and one control (1.2%). No statistically significant differences in outcome were found between cases and controls.

CONCLUSIONS: In this sample, preterm infants with low-grade intraventricular hemorrhage diagnosed by cranial ultrasonography had no difference in early neurodevelopmental outcome when compared with controls.


cerebral intraventricular hemorrhage; preterm infant; neurodevelopmental disorders.

Full Text:



Kenet G, Kuperman AA, Strauss T, Brenner B. Neonatal IVH – mechanisms and management. Thromb Res. 2011;127 Suppl 3:S120-2. https://doi.org/10.1016/S0049-3848(11)70032-9

Ballabh P. Intraventricular hemorrhage in premature infants: mechanism of disease. Pediatr Res. 2010;67(1):1-8. https://doi.org/10.1203/PDR.0b013e3181c1b176

Owens R. Intraventricular hemorrhage in the premature neonate. Neonatal Netw. 2005;24(3):55-71. https://doi.org/10.1891/0730-0832.24.3.55

Larroque B, Marret S, Ancel PY, Arnaud C, Marpeau L, Supernant K, Pierrat V, Rozé JC, Matis J, Cambonie G, Burguet A, Andre M, Kaminski M, Bréart G. White matter damage and intraventricular hemorrhage in very preterm infants: the EPIPAGE study. J Pediatr. 2003;143(4):477-83. https://doi.org/10.1067/S0022-3476(03)00417-7

Patra K, Wilson-Costello D, Taylor HG, Mercuri-Minich N, Hack M. Grades I-II intraventricular hemorrhage in extremely low birth weight infants: effects on neurodevelopment. J Pediatr. 2006;149(2):169-73. https://doi.org/10.1016/j.jpeds.2006.04.002

Cust AE, Darlow BA, Donoghue DA; Australian and New Zealand Neonatal Network (ANZNN). Outcomes for high risk New Zealand newborn infants in 1998-1999: a population based, national study. Arch Dis Child Fetal Neonatal Ed. 2003;88(1):F15-22. https://doi.org/10.1136/fn.88.1.F15

Plaisier A, Raets MM, Ecury-Goossen GM, Govaert P, Feijen-Roon M, Reiss IK, Smit LS, Lequin MH, Dudink J. Serial cranial ultrasonography or early MRI for detecting preterm brain injury? Arch Dis Child Fetal Neonatal Ed. 2015;100(4):F293-300. https://doi.org/10.1136/archdischild-2014-306129

Brouwer A, Groenendaal F, van Haastert IL, Rademaker K, Hanlo P, de Vries L. Neurodevelopmental outcome of preterm infants with severe intraventricular hemorrhage and therapy for post-hemorrhagic ventricular dilatation. J Pediatr. 2008;152(5):648-54. https://doi.org/10.1016/j.jpeds.2007.10.005

Calisici E, Eras Z, Oncel MY, Oguz SS, Gokce IK, Dilmen U. Neurodevelopmental outcomes of premature infants with severe intraventricular hemorrhage. J Matern Fetal Neonatal Med. 2015;28(17):2115-20. https://doi.org/10.3109/14767058.2014.979783

Ann Wy P, Rettiganti M, Li J, Yap V, Barrett K, Whiteside-Mansell L, Casey P. Impact of intraventricular hemorrhage on cognitive and behavioral outcomes at 18 years of age in low birth weight preterm infants. J Perinatol. 2015;35(7):511-5. https://doi.org/10.1038/jp.2014.244

Reubsaet P, Brouwer AJ, van Haastert IC, Brouwer MJ, Koopman C, Groenendaal F, de Vries LS. The Impact of Low-Grade Germinal Matrix-Intraventricular Hemorrhage on Neurodevelopmental Outcome of Very Preterm Infants. Neonatology. 2017;112(3):203-10. https://doi.org/10.1159/000472246

Vohr BR, Allan W, Katz KH, Schneider K, Tucker R, Ment LR. Adolescents born prematurely with isolated grade 2 haemorrhage in the early 1990s face increased risks of learning challenges. Acta Paediatr. 2014;103(10):1066-71. https://doi.org/10.1111/apa.12728

Payne AH, Hintz SR, Hibbs AM, Walsh MC, Vohr BR, Bann CM, Wilson-Costello. Neurodevelopmental outcomes of extremely low-gestational-age neonates with low-grade periventricular-intraventricular hemorrhage. JAMA Pediatr. 2013;167(5):451-9. https://doi.org/10.1001/jamapediatrics.2013.866

Bolisetty S, Dhawan A, Abdel-Latif M, Bajuk B, Stack J, Lui K. Intraventricular hemorrhage and neurodevelopmental outcomes in extreme preterm infants. Pediatrics. 2014;133(1):55-62. https://doi.org/10.1542/peds.2013-0372

O'Shea TM, Allred EN, Kuban KC, Hirtz D, Specter B, Durfee S, Paneth N, Leviton A; ELGAN Study Investigators. Intraventricular hemorrhage and developmental outcomes at 24 months of age in extremely preterm infants. J Child Neurol. 2012;27(1):22-9. https://doi.org/10.1177/0883073811424462

Papile LA, Burstein J, Burstein R, Koffler H. Incidence and evolution of subependymal and intraventricular hemorrhage: a study of infants with birth weights less than 1,500 gm. J Pediatr. 1978;92(4):529-34. https://doi.org/10.1016/S0022-3476(78)80282-0

Walsh MC, Kliegman RM. Necrotizing enterocolitis: treatment based on staging criteria. Pediatr Clin North Am. 1986;33(1):179-201. https://doi.org/10.1016/S0031-3955(16)34975-6

International Committee for the Classification of Retinopathy of P. The International Classification of Retinopathy of Prematurity revisited. Arch Ophthalmol. 2005;123(7):991-9. https://doi.org/10.1001/archopht.123.7.991

Tita AT, Andrews WW. Diagnosis and management of clinical chorioamnionitis. Clin Perinatol. 2010;37(2):339-54. https://doi.org/10.1016/j.clp.2010.02.003

Fenton TR, Kim JH. A systematic review and meta-analysis to revise the Fenton growth chart for preterm infants. BMC Pediatr. 2013;13:59. https://doi.org/10.1186/1471-2431-13-59

The CRIB (clinical risk index for babies) score: a tool for assessing initial neonatal risk and comparing performance of neonatal intensive care units. The International Neonatal Network. Lancet. 1993;342(8865):193-8. https://doi.org/10.1016/0140-6736(93)92296-6

Rosenbaum P, Paneth N, Leviton A, Goldstein M, Bax M, Damiano D, et al. A report: the definition and classification of cerebral palsy April 2006. Dev Med Child Neurol Suppl. 2007;109:8-14.

Luiz D, Faragher B, Barnard A, Knoesen N, Kotras N, L B. Griffiths Mental Developmental Scales Extended Revised. Oxford: Hogrefe; 2006.

Volpe JJ. Intracranial hemorrhage: Germinal matrix hemorrhage. In: Volpe JJ, editor. Neurology of the newborn. 5th edition Philadelphia: Saunders Elsevier; 2008. p. 517-88.

Mohamed MA, Aly H. Male gender is associated with intraventricular hemorrhage. Pediatrics. 2010;125(2):e333-9. https://doi.org/10.1542/peds.2008-3369

Nunez JL, McCarthy MM. Sex differences and hormonal effects in a model of preterm infant brain injury. Ann N Y Acad Sci. 2003;1008:281-4. https://doi.org/10.1196/annals.1301.032

Schauwecker PE, Wood RI, Lorenzana A. Neuroprotection against excitotoxic brain injury in mice after ovarian steroid depletion. Brain Res. 2009;1265:37-46. https://doi.org/10.1016/j.brainres.2009.02.023

Roberts D, Brown J, Medley N, Dalziel SR. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst Rev. 2017;3:CD004454. https://doi.org/10.1002/14651858.CD004454.pub3

Vinagre LEF, Marba STM. Uso antenatal do corticosteroide e hemorragia peri-intraventricular. Rev Paul Pediatr. 2010;28(3):346-52. https://doi.org/10.1590/S0103-05822010000300014

Heep A, Behrendt D, Nitsch P, Fimmers R, Bartmann P, Dembinski J. Increased serum levels of interleukin 6 are associated with severe intraventricular haemorrhage in extremely premature infants. Arch Dis Child Fetal Neonatal Ed. 2003;88(6):F501-4. https://doi.org/10.1136/fn.88.6.F501

Hansen A, Leviton A. Labor and delivery characteristics and risks of cranial ultrasonographic abnormalities among very-low-birth-weight infants. The Developmental Epidemiology Network Investigators. Am J Obstet Gynecol. 1999;181(4):997-1006. https://doi.org/10.1016/S0002-9378(99)70339-X

Linder N, Haskin O, Levit O, Klinger G, Prince T, Naor N, Turner P, Karmazyn B, Sirota L. Risk factors for intraventricular hemorrhage in very low birth weight premature infants: a retrospective case-control study. Pediatrics. 2003;111(5 Pt 1):e590-5. https://doi.org/10.1542/peds.111.5.e590

Sauer CW, Kong JY, Vaucher YE, Finer N, Proudfoot JA, Boutin MA, Leone TA. Intubation Attempts Increase the Risk for Severe Intraventricular Hemorrhage in Preterm Infants-A Retrospective Cohort Study. J Pediatr. 2016;177:108-13. https://doi.org/10.1016/j.jpeds.2016.06.051

Lee JY, Kim HS, Jung E, Kim ES, Shim GH, Lee HJ, Lee JA, Choi CW, Kim EK, Kim BI, Choi JH. Risk factors for periventricular-intraventricular hemorrhage in premature infants. J Korean Med Sci. 2010;25(3):418-24. https://doi.org/10.3346/jkms.2010.25.3.418

Ment LR, Stewart WB, Duncan CC, Lambrecht R. Beagle puppy model of intraventricular hemorrhage. J Neurosurg. 1982;57(2):219-23. https://doi.org/10.3171/jns.1982.57.2.0219

Klebermass-Schrehof K, Czaba C, Olischar M, Fuiko R, Waldhoer T, Rona Z, Pollak A, Weninger M. Impact of low-grade intraventricular hemorrhage on long-term neurodevelopmental outcome in preterm infants. Childs Nerv Syst. 2012;28(12):2085-92. https://doi.org/10.1007/s00381-012-1897-3

Novak I, Morgan C, Adde L, Blackman J, Boyd RN, Brunstrom-Hernandez J, Cioni G, Damiano D, Darrah J, Eliasson AC, de Vries LS, Einspieler C, Fahey M, Fehlings D, Ferriero DM, Fetters L, Fiori S, Forssberg H, Gordon AM, Greaves S, Guzzetta A, Hadders-Algra M, Harbourne R, Kakooza-Mwesige A, Karlsson P, Krumlinde-Sundholm L, Latal B, Loughran-Fowlds A, Maitre N, McIntyre S, Noritz G, Pennington L, Romeo DM, Shepherd R, Spittle AJ, Thornton M, Valentine J, Walker K, White R, Badawi N. Early, accurate diagnosis and early intervention in cerebral palsy: Advances in diagnosis and treatment. JAMA Pediatr. 2017;171(9):897-907. https://doi.org/10.1001/jamapediatrics.2017.1689

Hinojosa-Rodríguez M, Harmony T, Carrillo-Prado C, Van Horn JD, Irimia A, Torgerson C, Jacokes Z. Clinical neuroimaging in the preterm infant: Diagnosis and prognosis. NeuroImage Clin. 2017;16:355-68. https://doi.org/10.1016/j.nicl.2017.08.015

DOI: http://dx.doi.org/10.15448/1980-6108.2018.3.29354

e-ISSN: 1980-6108 | ISSN-L: 1806-5562

Except where otherwise specified, material published in this journal is licensed under a Creative Commons Attribution 4.0 International license, which allows unrestricted use, distribution and reproduction in any medium, provided the original publication is correctly cited.