Antiangiogenic potential of Jatropha curcas latex in the chick chorioallantoic membrane model

Luciane Madureira Almeida, Elisa Flávia Luiz Cardoso Bailão, Illana Reis Pereira, Fabrício Alves Ferreira, Patrícia Lima D'Abadia, Leonardo Luiz Borges, Fábio Santos Matos, Ruy de Souza Lino-Júnior, Paulo Roberto de Melo-Reis, Pablo José Gonçalves

Abstract


AIMS: To perform a physicochemical and phytochemical characterization of Jatropha curcas latex and to investigate its antiangiogenic potential.

 METHODS: We performed an initial physicochemical characterization of J. curcas latex using thermal gravimetric analyses and Fourier Transform Infrared spectroscopy. After that, phenols, tannins and flavonoids were quantified. Finally, the potential of J. curcas latex to inhibit angiogenesis was evaluated using the chick chorioallantoic membrane model. Five groups of 20 fertilized chicken eggs each had the chorioallantoic membrane exposed to the following solutions: (1) water, negative control; (2) dexamethasone, angiogenesis inhibitor; (3) Regederm®, positive control; (4) 25% J. curcas latex diluted in water; (5) 50% J. curcas latex diluted in water; and (6) J. curcas crude latex. Analysis of the newly-formed vascular net was made through captured images and quantification of the number of pixels. Histological analyses were performed to evaluate the inflammation, neovascularization, and hyperemia parameters. The results were statically analyzed with a significance level set at p ˂0.05.

RESULTS: Physicochemical characterization showed that J. curcas latex presented a low amount of cis-1.4-polyisoprene, which reduced its elasticity and thermal stability. Phytochemical analyses of J. curcas latex identified a substantial amount of phenols, tannins, and flavonoids (51.9%, 11.8%, and 0.07% respectively). Using a chick chorioallantoic membrane assay, we demonstrated the antiangiogenic potential of J. curcas latex. The latex induced a decrease in the vascularization of the membranes when compared with neutral and positive controls (water and Regederm®). However, when compared with the negative control (dexamethasone), higher J. curcas latex concentrations showed no significant differences.

CONCLUSIONS: J. curcas latex showed low thermal stability, and consisted of phenols, tannins, and flavonoids, but little or no rubber. Moreover, this latex demonstrated a significant antiangiogenic activity on a chick chorioallantoic membrane model. The combination of antimutagenic, cytotoxic, antioxidant and antiangiogenic properties makes J. curcas latex a potential target for the development of new drugs.


Keywords


physic nut; purging nut; anticancer agents; chorioallantoic membrane.

Full Text:

PDF IN ENGLISH

References


Ma J, Waxman DJ. Modulation of the antitumor activity of metronomic cyclophosphamide by the angiogenesis inhibitor axitinib. Mol Cancer Ther. 2008;7(1):79-89. https://doi.org/10.1158/1535-7163.MCT-07-0584

Yang WH, Xu J, Mu JB, Xie J. Revision of the concept of anti-angiogenesis and its applications in tumor treatment. Chronic Dis Transl Med. 2017;3:33-40. https://doi.org/10.1016/j.cdtm.2017.01.002

Ribeiro SS, Jesus AM, Anjos CS, da Silva TB, Santos AD, de Jesus JR, Andrade MS, Sampaio TS, Gomes WF, Alves PB, Carvalho AA, Pessoa C, de Moraes MO, Pinheiro ML, Prata AP, Blank AF, Silva-Mann R, Moraes VR, Costa EV, Nogueira PC, Bezerra DP. Evaluation of the cytotoxic activity of some Brazilian medicinal plants. Planta Med. 2012;78(14):1601-6. https://doi.org/10.1055/s-0032-1315043

Sun Q, Heilmann J, Konig B. Natural phenolic metabolites with anti-angiogenic properties - a review from the chemical point of view. Beilstein J Org Chem. 2015;11:249-64. https://doi.org/10.3762/bjoc.11.28

De Almeida LM, Prado ADL, D'abadia PL, Machado KB, Melo-Reis PR, Nabout JC, Gonçalves PJ. The state-of-art in angiogenic properties of latex from different plant species. Current Angiogenesis. 2015;4(1):10-23. https://doi.org/10.2174/221155280401160517164531

Diégues MC, Cerecedo I, Muriel A, Losada A, García E, Lázaro M, de la Hoz B. Adaptation and validation of the Spanish version of the quality of life in latex allergy questionnaire (QOLLA). J Investig Allergol Clin Immunol. 2011;21:283-9.

Matos FS, Ciappina AL, Rocha EC, Almeida LM. Factors that influence in Jatropha curcas L. latex production. Bragantia, 2018;77(1):74-82. https://doi.org/10.1590/1678-4499.2016468

Pereira IR, D'Abadia PL, do Prado ADL, Matos FS, Nabout JC, Gonçalves PJ, Almeida LM. Trends and gaps in the global scientific literature about Jatropha curcas L. (Euphorbiaceae), a tropical plant of economic importance. Semina: Cienc Agrar. 2018;39(1):7-18. https://doi.org/10.5433/1679-0359.2018v39n1p7

Debnath M, Bisen PS. Jatropha curcas L, a multipurpose stress resistant plant with a potential for ethnomedicine and renewable energy. Curr Pharmac Biotechnol. 2008;9(4):288-306. https://doi.org/10.2174/138920108785161541

Oskoueian E, Abdullah N, Saad WZ, Omar AR, Ahmad S, Kuan WB, Zolkifli NA, Hendra R, Ho YW. Antioxidant, anti-inflammatory and anticancer activities of methanolic extracts from Jatropha curcas Linn. J Med Plant Res. 2011;5(1):49-57.

Insanu M, Anggadiredja J, Oliver K. Curcacycline A and B – new pharmacological insights to an old drug. Int J Appl Res Nat Prod. 2012;5(2):26-34.

Ribatti D. The chick embryo chorioallantoic membrane as an in vivo assay to study antiangiogenesis. Pharmaceuticals. 2010;3:482-513. https://doi.org/10.3390/ph3030482

Lemes SR, Adriano Júnior L, Manoel DS, Sousa MAM, Fonseca RD, Lima RS, Noda-Perez C, Melo Reis PR, Cardoso CG, Silveira-Lacerda EP, Souza MAR, Mendonça CR, Gonçalves PJ, de Boni L, Fonseca TL, Silva Junior NJ. Optical properties and antiangiogenic activity of a chalcone derivate, Spectrochim. Acta A. 2018;204:685-95. https://doi.org/10.1016/j.saa.2018.06.099

Nowak-Sliwinska P, Segura T, Iruela-Arispe M. The chicken chorioallantoic membrane model in biology, medicine and bioengineering, Angiogenesis. 2014;17(4):779-804. https://doi.org/10.1007/s10456-014-9440-7

Aleksandrowicz E, Herr I. Ethiccal eutanasia and short-term anestesia of chick embryo. ALTEX. 2015;32(2):143-7.

Floriano JF, Neto FC, Mota LSLS, Furtado EL, Ferreira RS, Barraviera B, Gonçalves PJ, de Almeida LM, Borges FA, Herculano RD, Graeff CFO. Comparative study of bone tissue accelerated regeneration by latex membranes from Hevea brasiliensis and Hancornia speciosa. Biomed Phys Eng Exp. 2016;2:045007. https://doi.org/10.1088/2057-1976/2/4/045007

Mole S, Waterman PG. A critical analysis of techniques for measuring tannins in ecological studies. Oecologia. 1987;72(1):137-47. https://doi.org/10.1007/BF00385058

Hagerman AE, Butler LG. Protein precipitation method for the quantitative determination of tannins. J Agric Food Chem. 1978;26:809-12. https://doi.org/10.1021/jf60218a027

Waterman PG, Molev S. A critical analysis of techniques for measuring tannins in ecological studies II: techniques for chemically defining tannins. Oecologia. 1987;72:148-56. https://doi.org/10.1007/BF00385059

Rolim A, Maciel CPM, Kaneko TM, Consiglieri VO, Salgado-Santos IMN, Velasco MVR. Validation assay for total flavonoids, as rutin equivalents, from Trichilia catigua Adr. Juss. (Meliaceae) and Ptychopetalum olacoides Bentham (Olacaceae) commercial extract. J AOAC Int. 2005;88:1015-9.

Almeida LM, Floriano JF, Ribeiro TP, Magno LN, da Mota LSLS, Peixoto N, Mrué F, Melo-Reis P, Lino Júnior RS, Graeff CFO, Gonçalves PJ. Hancornia speciosa latex for biomedical applications: physical and chemical properties, biocompatibility assessment and angiogenic activity. J Mat Sci: Mat Med. 2014;25(9):2153-62. https://doi.org/10.1007/s10856-014-5255-8

Suhaili ZCCY, Yeo HN, Badaludin NA, Zakaria ZA. Antibacterial profile of Jatropha curcas latex extracts against selected humam pathogenic bacteria. Afr J Microbiol Res. 2011;5(29):5147-54. https://doi.org/10.5897/AJMR11.663

Arekemase MO, Kayoder RMO, Ajiboye AE. Antimicrobial activity and phytochemical analysis of Jatropha curcas plant against some selected microorganisms. Int J Biol. 2011;3:52-9. https://doi.org/10.5539/ijb.v3n3p52

Kumar A, Sharma S. An evaluation of multipurpose oil seed crop for industrial uses (Jatropha curcas L): a review. Ind Crop Prod. 2008;28:1-10. https://doi.org/10.1016/j.indcrop.2008.01.001

Działo M, Mierziak J, Korzun U, Preisner M, Szopa J, Kulma A.The potential of plant phenolics in prevention and therapy of skin disorders. Int J Mol Sci. 2016;17:160. https://doi.org/10.3390/ijms17020160

Wittenauer J, Mackle S, Sussmann D, Schweiggert-Weisz U, Carle R. Inhibitory effects of polyphenols from grape pomace extract on collagenase and elastase activity. Fitoterapia. 2015;101:179-87. https://doi.org/10.1016/j.fitote.2015.01.005

Danciu C, Vlaia L, Fetea F, Hancianu M, Coricovac DE, Ciurlea SA, Soica CM, Marincu I, Vlaia V, Dehelean CA, Trandafirescu C. Evaluation of phenolic profile, antioxidant and anticancer potential of two main representants of Zingiberaceae family against B164A5 murine melanoma cells. Biol Res. 2015;48:1-9. https://doi.org/10.1186/0717-6287-48-1

Karim AA, Azlan A, Ismail A, Hashim P, Abd Gani SS, Zainudin BH, Abdullah NA. Phenolic composition, antioxidant, anti-wrinkles and tyrosinase inhibitory activities of cocoa pod extract. BMC Complement Altern Med. 2014;14:381. https://doi.org/10.1186/1472-6882-14-381

Ciappina AL, Ferreira FA, Pereira IR, Sousa TR, Matos FS, Melo-Reis PR, Gonçalves PJ, Bailão EFLC, Almeida LM. Toxicity of Jatropha curcas L. latex in Allium cepa test. Biosci J. 2017;33(5):1295-304.

https://doi.org/10.14393/BJ-v33n5a2017-33835

Hadi SM, Asad SF, Singh S, Ahmad A. Putative mechanism for anticancer and apoptosis-inducing properties of plant-derived polyphenolic compounds. IUBMB Life. 2000;50:167-71. https://doi.org/10.1080/152165400300001471

Islam S, Nasrin S, Khan MA, Hossain AS, Islam F, Khandokhar P, Mollah MN, Rashid M, Sadik G, Rahman MA, Alam AH. Evaluation of antioxidant and anticancer properties of the seed extracts of Syzygium fruticosum Roxb. growing in Rajshahi, Bangladesh. BMC Complement Altern Med. 2013;13:142. https://doi.org/10.1186/1472-6882-13-142

de Sá Coutinho D, Pacheco MT, Frozza RL, Bernardi A. Anti-inflammatory effects of resveratrol: mechanistic insights. Int J Mol Sci. 2018;19(6):E1812. https://doi.org/10.3390/ijms19061812

Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A. Cancer-related inflammation, the seventh hallmark of cancer: Links to genetic instability. Carcinogenesis. 2009;30:1073-81. https://doi.org/10.1093/carcin/bgp127

Hussain SP, Harris CC. Inflammation and cancer: An ancient link with novel potentials. Int J Cancer. 2007;121:2373-80. https://doi.org/10.1002/ijc.23173

Nath LK, Dutta SK. Extraction and purification of curcain, a protease from the latex of Jatropha curcas Linn. J Pharm Pharmacol. 1991;43:111-4. https://doi.org/10.1111/j.2042-7158.1991.tb06642.x

van den Berg AJ, Horsten SF, Kettenes-van den Bosch JJ, Kroes BH, Beukelman CJ, Leeflang BR, Labadie RP. Curcacycline A-a novel cyclic octapeptide isolated from the latex of Jatropha curcas L. FEBS Lett. 1995;358(3):215-8. https://doi.org/10.1016/0014-5793(94)01405-P

Auvin C, Baraguey C, Blond A, Lezenven F, Pousset JL, Bodo B. Curcacycline B, a cyclic nonapeptide from Jatropha curcas enhancing rotamase activity of cyclophilin. Tetrahedron Lett. 1997;38(16):2845-8. https://doi.org/10.1016/S0040-4039(97)00495-4

Altei WF, Picchi DG, Abissi BM, Giesel GM, Flausino O Jr, Reboud-Ravaux M, Verli H, Crusca E Jr, Silveira ER, Cilli EM, Bolzani VS. Jatrophidin I, a cyclic peptide from Brazilian Jatropha curcas L.: isolation, characterization, conformational studies and biological activity. Phytochemistry. 2014;107:91-6. https://doi.org/10.1016/j.phytochem.2014.08.006

Devappa RK, Makkar HPS, Becker K. Jatropha diterpenes: A review. J Am Oil Chem Soc. 2011;88:301-22. https://doi.org/10.1007/s11746-010-1720-9

Folkman J. Fundamental concepts of the angiogenic process. Curr Mol Med. 2003;3(7):643-51. https://doi.org/10.2174/1566524033479465

Fisher C, Schneider M, Carmeliet P. Principles and therapeutic implications of angiogenesis vasculogenesis and arteriogenesis. Handb Exp Pharmacol. 2006;(176 Pt 2):157-212. https://doi.org/10.1007/3-540-36028-X_6

Vasudev NS, Reynolds AR. Anti-angiogenic therapy for cancer: current progress, unresolved questions and future directions, Angiogenesis. 2014;17:471-94. https://doi.org/10.1007/s10456-014-9420-y

Salim MN, Masyitha D, Harris A, Balqis U, Iskandar CD, Hambal M, Darmawi. Anti-inflammatory activity of Jatropha curcas Linn. latex in cream formulation on CD68 expression in mice skin wound. Vet World. 2018;11(2):99-103. https://doi.org/10.14202/vetworld.2018.99-103

Balqis U, Darmawi, Iskandar CD, Salim MN. Angiogenesis activity of Jatropha curcas L. latex in cream formulation on wound healing in mice. Vet World. 2018;11(7): 939-43. https://doi.org/10.14202/vetworld.2018.939-943

Zhu D, Wang S, Lawless J, He J, Zheng Z. Dose dependent dual effect of Baicalin and herb Huang Qin extract on angiogenesis. PLoS One. 2016;30(11):e0167125. https://doi.org/10.1371/journal.pone.0167125




DOI: http://dx.doi.org/10.15448/1980-6108.2019.1.32157

This journal is a member of COPE (Committee on Publication Ethics) and follow the principles recommended by this international reference organization on integrity and ethics in scientific publication.

Licença Creative Commons
Except where otherwise noted, the material published in this journal is licensed under a Creative Commons Attribution 4.0 International licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original publication is properly cited.
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.

 
 Member of OASPA

Copyright: © 2006-2019 EDIPUCRS