Antiangiogenic potential of Jatropha curcas latex in the chick chorioallantoic membrane model

Autores

  • Luciane Madureira Almeida Universidade Estadual de Goiás Escola, Faculdade, Departamento ou Setor: Laboratório de Biotecnologia, Campus Henrique Santillo Cidade, estado, país: Anápolis, Goiás, Brasil http://orcid.org/0000-0003-1764-1480
  • Elisa Flávia Luiz Cardoso Bailão Universidade Estadual de Goiás Escola, Faculdade, Departamento ou Setor: Laboratório de Biotecnologia, Campus Henrique Santillo Cidade, estado, país: Anápolis, Goiás, Brasil
  • Illana Reis Pereira Universidade Estadual de Goiás Escola, Faculdade, Departamento ou Setor: Programa de Pós Graduação em Produção Vegetal, UEG Campus de Ipameri Cidade, estado, país: Ipameri, Goiás, Brasil
  • Fabrício Alves Ferreira Universidade Estadual de Goiás Escola, Faculdade, Departamento ou Setor: Programa de Pós Graduação em Produção Vegetal, UEG Campus de Ipameri Cidade, estado, país: Ipameri, Goiás, Brasil
  • Patrícia Lima D'Abadia
  • Leonardo Luiz Borges Pontifícia Universidade Católica de Goiás Escola, Faculdade, Departamento ou Setor: Escola de Ciências Médicas, Farmacêuticas e Biomédicas, Pontifícia Universidade Católica de Goiás. Cidade, estado, país: Goiânia, Goiás, Brasil
  • Fábio Santos Matos Universidade Estadual de Goiás Escola, Faculdade, Departamento ou Setor: Laboratório de Fisiologia Vegetal, Campus Ipameri Cidade, estado, país: Ipameri, Goiás, Brasil
  • Ruy de Souza Lino-Júnior Universidade Federal de Goiás Escola, Faculdade, Departamento ou Setor: Institute of Tropical Pathology and Public Health, Universidade Federal de Goiás. Cidade, estado, país: Goiânia, Goiás, Brasil
  • Paulo Roberto de Melo-Reis Laboratório de Estudos Experimentais e Biotecnológicos, Pontifícia Universidade Católica de Goiás –PUCGo, Goiânia, GO, Brasil. Cidade, estado, país: Goiânia, Goiás, Brasil
  • Pablo José Gonçalves Instituto de Física da Universidade Federal de Goiás, campus Samambaia

DOI:

https://doi.org/10.15448/1980-6108.2019.1.32157

Palavras-chave:

pinhão-manso, pinhão de purga, agentes antineoplásicos, membrana corioalantoide.

Resumo

***Potencial antiangiogênico do látex de Jatropha curcas em modelo de membrana corioalantoica de embrião de galinha***

OBJETIVOS: Realizar uma caracterização físico-química e fitoquímica do látex de Jatropha curcas e investigar o seu potencial antiangiogênico.

MÉTODOS: foi realizada uma caracterização físico-química inicial do látex de J. curcas utilizando as análises termogravimétricas e a espectroscopia com a Transformada de Fourier. Depois disso, fenóis, taninos e flavonoides foram quantificados. Finalmente, o potencial do látex de J. curcas em inibir a angiogênese foi avaliado através do uso de modelo de membrana corioalantoica de embrião de galinha. Cinco grupos, cada um com 20 ovos de galinha fertilizados, tiveram a membrana corioalantoica exposta às seguintes soluções: (1) água, controle negativo; (2) dexametasona, inibidor da angiogênese; (3) Regederm®, controle positivo; (4) 25% de látex de J. curcas diluído em água; (5) 50% de látex de J. curcas diluído em água; e (6) látex bruto de J. curcas. A análise da rede vascular recém-formada foi feita por meio de imagens capturadas e quantificação do número de pixels. Análises histológicas foram realizadas para avaliar os parâmetros de inflamação, neovascularização e hiperemia. Os resultados foram analisados estaticamente com nível de significância estabelecido em p˂0,05.

RESULTADOS: A caracterização físico-química mostrou que o látex de J. curcas apresenta uma baixa quantidade de cis-1,4-poliisopreno, o que reduz sua elasticidade e estabilidade térmica. Análises fitoquímicas do látex de J. curcas identificaram uma quantidade significativa de fenóis, taninos e flavonoides (51,9%, 11,8% e 0,07% respectivamente). Usando o modelo de membrana corioalantoica de ovo de galinha embrionado, demonstrou-se o potencial antiangiogênico do látex de J. curcas. O látex induziu a diminuição da vascularização das membranas, em comparação aos grupos controle neutro e positivo (água e Regederm®).

CONCLUSÕES: O látex de J. curcas apresentou baixa estabilidade térmica, ausência ou pouca quantidade de borracha e presença de fenóis, taninos e flavonoides em sua composição. Além disso, apresentou alta atividade antiangiogênica no modelo de membrana corioalantoica de embrião de galinha. A combinação de propriedades antimutagênicas, citotóxicas, anti-inflamatórias, antioxidantes e antiangiogênicas faz com que o látex de J. curcas seja um alvo potencial para o desenvolvimento de novos medicamentos.

Downloads

Não há dados estatísticos.

Biografia do Autor

Luciane Madureira Almeida, Universidade Estadual de Goiás Escola, Faculdade, Departamento ou Setor: Laboratório de Biotecnologia, Campus Henrique Santillo Cidade, estado, país: Anápolis, Goiás, Brasil

Campus Henrique Santilha, Ciências Biológicas, Anápolis, Goiás

Referências

Ma J, Waxman DJ. Modulation of the antitumor activity of metronomic cyclophosphamide by the angiogenesis inhibitor axitinib. Mol Cancer Ther. 2008;7(1):79-89. https://doi.org/10.1158/1535-7163.MCT-07-0584

Yang WH, Xu J, Mu JB, Xie J. Revision of the concept of anti-angiogenesis and its applications in tumor treatment. Chronic Dis Transl Med. 2017;3:33-40. https://doi.org/10.1016/j.cdtm.2017.01.002

Ribeiro SS, Jesus AM, Anjos CS, da Silva TB, Santos AD, de Jesus JR, Andrade MS, Sampaio TS, Gomes WF, Alves PB, Carvalho AA, Pessoa C, de Moraes MO, Pinheiro ML, Prata AP, Blank AF, Silva-Mann R, Moraes VR, Costa EV, Nogueira PC, Bezerra DP. Evaluation of the cytotoxic activity of some Brazilian medicinal plants. Planta Med. 2012;78(14):1601-6. https://doi.org/10.1055/s-0032-1315043

Sun Q, Heilmann J, Konig B. Natural phenolic metabolites with anti-angiogenic properties - a review from the chemical point of view. Beilstein J Org Chem. 2015;11:249-64. https://doi.org/10.3762/bjoc.11.28

De Almeida LM, Prado ADL, D'abadia PL, Machado KB, Melo-Reis PR, Nabout JC, Gonçalves PJ. The state-of-art in angiogenic properties of latex from different plant species. Current Angiogenesis. 2015;4(1):10-23. https://doi.org/10.2174/221155280401160517164531

Diégues MC, Cerecedo I, Muriel A, Losada A, García E, Lázaro M, de la Hoz B. Adaptation and validation of the Spanish version of the quality of life in latex allergy questionnaire (QOLLA). J Investig Allergol Clin Immunol. 2011;21:283-9.

Matos FS, Ciappina AL, Rocha EC, Almeida LM. Factors that influence in Jatropha curcas L. latex production. Bragantia, 2018;77(1):74-82. https://doi.org/10.1590/1678-4499.2016468

Pereira IR, D'Abadia PL, do Prado ADL, Matos FS, Nabout JC, Gonçalves PJ, Almeida LM. Trends and gaps in the global scientific literature about Jatropha curcas L. (Euphorbiaceae), a tropical plant of economic importance. Semina: Cienc Agrar. 2018;39(1):7-18. https://doi.org/10.5433/1679-0359.2018v39n1p7

Debnath M, Bisen PS. Jatropha curcas L, a multipurpose stress resistant plant with a potential for ethnomedicine and renewable energy. Curr Pharmac Biotechnol. 2008;9(4):288-306. https://doi.org/10.2174/138920108785161541

Oskoueian E, Abdullah N, Saad WZ, Omar AR, Ahmad S, Kuan WB, Zolkifli NA, Hendra R, Ho YW. Antioxidant, anti-inflammatory and anticancer activities of methanolic extracts from Jatropha curcas Linn. J Med Plant Res. 2011;5(1):49-57.

Insanu M, Anggadiredja J, Oliver K. Curcacycline A and B – new pharmacological insights to an old drug. Int J Appl Res Nat Prod. 2012;5(2):26-34.

Ribatti D. The chick embryo chorioallantoic membrane as an in vivo assay to study antiangiogenesis. Pharmaceuticals. 2010;3:482-513. https://doi.org/10.3390/ph3030482

Lemes SR, Adriano Júnior L, Manoel DS, Sousa MAM, Fonseca RD, Lima RS, Noda-Perez C, Melo Reis PR, Cardoso CG, Silveira-Lacerda EP, Souza MAR, Mendonça CR, Gonçalves PJ, de Boni L, Fonseca TL, Silva Junior NJ. Optical properties and antiangiogenic activity of a chalcone derivate, Spectrochim. Acta A. 2018;204:685-95. https://doi.org/10.1016/j.saa.2018.06.099

Nowak-Sliwinska P, Segura T, Iruela-Arispe M. The chicken chorioallantoic membrane model in biology, medicine and bioengineering, Angiogenesis. 2014;17(4):779-804. https://doi.org/10.1007/s10456-014-9440-7

Aleksandrowicz E, Herr I. Ethiccal eutanasia and short-term anestesia of chick embryo. ALTEX. 2015;32(2):143-7.

Floriano JF, Neto FC, Mota LSLS, Furtado EL, Ferreira RS, Barraviera B, Gonçalves PJ, de Almeida LM, Borges FA, Herculano RD, Graeff CFO. Comparative study of bone tissue accelerated regeneration by latex membranes from Hevea brasiliensis and Hancornia speciosa. Biomed Phys Eng Exp. 2016;2:045007. https://doi.org/10.1088/2057-1976/2/4/045007

Mole S, Waterman PG. A critical analysis of techniques for measuring tannins in ecological studies. Oecologia. 1987;72(1):137-47. https://doi.org/10.1007/BF00385058

Hagerman AE, Butler LG. Protein precipitation method for the quantitative determination of tannins. J Agric Food Chem. 1978;26:809-12. https://doi.org/10.1021/jf60218a027

Waterman PG, Molev S. A critical analysis of techniques for measuring tannins in ecological studies II: techniques for chemically defining tannins. Oecologia. 1987;72:148-56. https://doi.org/10.1007/BF00385059

Rolim A, Maciel CPM, Kaneko TM, Consiglieri VO, Salgado-Santos IMN, Velasco MVR. Validation assay for total flavonoids, as rutin equivalents, from Trichilia catigua Adr. Juss. (Meliaceae) and Ptychopetalum olacoides Bentham (Olacaceae) commercial extract. J AOAC Int. 2005;88:1015-9.

Almeida LM, Floriano JF, Ribeiro TP, Magno LN, da Mota LSLS, Peixoto N, Mrué F, Melo-Reis P, Lino Júnior RS, Graeff CFO, Gonçalves PJ. Hancornia speciosa latex for biomedical applications: physical and chemical properties, biocompatibility assessment and angiogenic activity. J Mat Sci: Mat Med. 2014;25(9):2153-62. https://doi.org/10.1007/s10856-014-5255-8

Suhaili ZCCY, Yeo HN, Badaludin NA, Zakaria ZA. Antibacterial profile of Jatropha curcas latex extracts against selected humam pathogenic bacteria. Afr J Microbiol Res. 2011;5(29):5147-54. https://doi.org/10.5897/AJMR11.663

Arekemase MO, Kayoder RMO, Ajiboye AE. Antimicrobial activity and phytochemical analysis of Jatropha curcas plant against some selected microorganisms. Int J Biol. 2011;3:52-9. https://doi.org/10.5539/ijb.v3n3p52

Kumar A, Sharma S. An evaluation of multipurpose oil seed crop for industrial uses (Jatropha curcas L): a review. Ind Crop Prod. 2008;28:1-10. https://doi.org/10.1016/j.indcrop.2008.01.001

Działo M, Mierziak J, Korzun U, Preisner M, Szopa J, Kulma A.The potential of plant phenolics in prevention and therapy of skin disorders. Int J Mol Sci. 2016;17:160. https://doi.org/10.3390/ijms17020160

Wittenauer J, Mackle S, Sussmann D, Schweiggert-Weisz U, Carle R. Inhibitory effects of polyphenols from grape pomace extract on collagenase and elastase activity. Fitoterapia. 2015;101:179-87. https://doi.org/10.1016/j.fitote.2015.01.005

Danciu C, Vlaia L, Fetea F, Hancianu M, Coricovac DE, Ciurlea SA, Soica CM, Marincu I, Vlaia V, Dehelean CA, Trandafirescu C. Evaluation of phenolic profile, antioxidant and anticancer potential of two main representants of Zingiberaceae family against B164A5 murine melanoma cells. Biol Res. 2015;48:1-9. https://doi.org/10.1186/0717-6287-48-1

Karim AA, Azlan A, Ismail A, Hashim P, Abd Gani SS, Zainudin BH, Abdullah NA. Phenolic composition, antioxidant, anti-wrinkles and tyrosinase inhibitory activities of cocoa pod extract. BMC Complement Altern Med. 2014;14:381. https://doi.org/10.1186/1472-6882-14-381

Ciappina AL, Ferreira FA, Pereira IR, Sousa TR, Matos FS, Melo-Reis PR, Gonçalves PJ, Bailão EFLC, Almeida LM. Toxicity of Jatropha curcas L. latex in Allium cepa test. Biosci J. 2017;33(5):1295-304.

https://doi.org/10.14393/BJ-v33n5a2017-33835

Hadi SM, Asad SF, Singh S, Ahmad A. Putative mechanism for anticancer and apoptosis-inducing properties of plant-derived polyphenolic compounds. IUBMB Life. 2000;50:167-71. https://doi.org/10.1080/152165400300001471

Islam S, Nasrin S, Khan MA, Hossain AS, Islam F, Khandokhar P, Mollah MN, Rashid M, Sadik G, Rahman MA, Alam AH. Evaluation of antioxidant and anticancer properties of the seed extracts of Syzygium fruticosum Roxb. growing in Rajshahi, Bangladesh. BMC Complement Altern Med. 2013;13:142. https://doi.org/10.1186/1472-6882-13-142

de Sá Coutinho D, Pacheco MT, Frozza RL, Bernardi A. Anti-inflammatory effects of resveratrol: mechanistic insights. Int J Mol Sci. 2018;19(6):E1812. https://doi.org/10.3390/ijms19061812

Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A. Cancer-related inflammation, the seventh hallmark of cancer: Links to genetic instability. Carcinogenesis. 2009;30:1073-81. https://doi.org/10.1093/carcin/bgp127

Hussain SP, Harris CC. Inflammation and cancer: An ancient link with novel potentials. Int J Cancer. 2007;121:2373-80. https://doi.org/10.1002/ijc.23173

Nath LK, Dutta SK. Extraction and purification of curcain, a protease from the latex of Jatropha curcas Linn. J Pharm Pharmacol. 1991;43:111-4. https://doi.org/10.1111/j.2042-7158.1991.tb06642.x

van den Berg AJ, Horsten SF, Kettenes-van den Bosch JJ, Kroes BH, Beukelman CJ, Leeflang BR, Labadie RP. Curcacycline A-a novel cyclic octapeptide isolated from the latex of Jatropha curcas L. FEBS Lett. 1995;358(3):215-8. https://doi.org/10.1016/0014-5793(94)01405-P

Auvin C, Baraguey C, Blond A, Lezenven F, Pousset JL, Bodo B. Curcacycline B, a cyclic nonapeptide from Jatropha curcas enhancing rotamase activity of cyclophilin. Tetrahedron Lett. 1997;38(16):2845-8. https://doi.org/10.1016/S0040-4039(97)00495-4

Altei WF, Picchi DG, Abissi BM, Giesel GM, Flausino O Jr, Reboud-Ravaux M, Verli H, Crusca E Jr, Silveira ER, Cilli EM, Bolzani VS. Jatrophidin I, a cyclic peptide from Brazilian Jatropha curcas L.: isolation, characterization, conformational studies and biological activity. Phytochemistry. 2014;107:91-6. https://doi.org/10.1016/j.phytochem.2014.08.006

Devappa RK, Makkar HPS, Becker K. Jatropha diterpenes: A review. J Am Oil Chem Soc. 2011;88:301-22. https://doi.org/10.1007/s11746-010-1720-9

Folkman J. Fundamental concepts of the angiogenic process. Curr Mol Med. 2003;3(7):643-51. https://doi.org/10.2174/1566524033479465

Fisher C, Schneider M, Carmeliet P. Principles and therapeutic implications of angiogenesis vasculogenesis and arteriogenesis. Handb Exp Pharmacol. 2006;(176 Pt 2):157-212. https://doi.org/10.1007/3-540-36028-X_6

Vasudev NS, Reynolds AR. Anti-angiogenic therapy for cancer: current progress, unresolved questions and future directions, Angiogenesis. 2014;17:471-94. https://doi.org/10.1007/s10456-014-9420-y

Salim MN, Masyitha D, Harris A, Balqis U, Iskandar CD, Hambal M, Darmawi. Anti-inflammatory activity of Jatropha curcas Linn. latex in cream formulation on CD68 expression in mice skin wound. Vet World. 2018;11(2):99-103. https://doi.org/10.14202/vetworld.2018.99-103

Balqis U, Darmawi, Iskandar CD, Salim MN. Angiogenesis activity of Jatropha curcas L. latex in cream formulation on wound healing in mice. Vet World. 2018;11(7): 939-43. https://doi.org/10.14202/vetworld.2018.939-943

Zhu D, Wang S, Lawless J, He J, Zheng Z. Dose dependent dual effect of Baicalin and herb Huang Qin extract on angiogenesis. PLoS One. 2016;30(11):e0167125. https://doi.org/10.1371/journal.pone.0167125

Publicado

2019-01-17

Como Citar

Almeida, L. M., Bailão, E. F. L. C., Pereira, I. R., Ferreira, F. A., D’Abadia, P. L., Borges, L. L., Matos, F. S., Lino-Júnior, R. de S., de Melo-Reis, P. R., & Gonçalves, P. J. (2019). Antiangiogenic potential of Jatropha curcas latex in the chick chorioallantoic membrane model. Scientia Medica, 29(1), e32157. https://doi.org/10.15448/1980-6108.2019.1.32157

Edição

Seção

Artigos Originais