The use of positron emission tomography (pet) in the diagnosis of neurodegenerative diseases of the elderly

Cristina Maria Moriguchi Jeckel

Abstract


---

Full Text:

PDF

References


Sokoloff L, Reivich M, Kennedy C, et al. The (14 C)-

deoxyglucose method for measurement of local cerebral

glucose utilization: theory, procedure and normal values in

the conscious and anesthetized albino rat. J Neurochem.

;28:897-916.

Pawlik G, Heiss WD. Positron emission tomography and

neuropsychological function. In: Bigler ED, Yeo RA,

Turkheimer E (eds). Neuropsychological function and brain

imaging. New York: Plenum Publ. Corp.; 1989. p. 65-138.

Heiss WD, Zimmermann-Meinzingen S. PET imaging in

the differential diagnosis of vascular dementia. J Neurol Sci.

;322(1-2):268-73.

Mosconi L. Glucose metabolism in normal aging and

Alzheimer’s disease: Methodological and physiological

considerations for PET studies. Clin Transl Imaging.

;1(4):217-33.

Salmon E. Functional brain imaging applications to

differential diagnosis in the dementias. Curr Opin Neurol.

;15(4):439-44.

Mosconi L, et al. FDG-PET changes in brain glucose

metabolism from normal cognition to pathologically

verified Alzheimer’s disease. Eur J Nucl Med Mol Imaging.

;36:811-22.

Herholz K, et al. Discrimination between Alzheimer

Dementia and Controls by Automated Analysis of

Multicenter FDG PET. Neuroimage. 2002;17(1):302-16.

Silverman DH, Small GW, Chang CY, et al. Positron emission

tomography in evaluation of dementia: Regional brain

metabolism and long-term outcome. JAMA. 2001;286(17):

-7.

De Santi S, de Leon MJ, Rusinek H, et al. Hippocampal

formation glucose metabolism and volume losses in MCI

and AD. Neurobiology of aging. 2001;22(4):529-39.

Gauthier S, et al. Mild cognitive impairment. Lancet.

;367:1262-70.

Jeong Y, et al. 18F-FDG PET Findings in Frontotemporal

Dementia: An SPM Analysis of 29 Patients. J Nucl Med.

;46:233-9.

Foster NL, et al. FDG-PET improves accuracy in

distinguishing frontotemporal dementia and Alzheimer’s

disease. Brain. 2007;130:2616-35.

Spehl TS, Hellwig S, Amtage F, et al. Syndrome-Specific

Patterns of Regional Cerebral Glucose Metabolism in

Posterior Cortical Atrophy in Comparison to Dementia

with Lewy Bodies and Alzheimer’s Disease-A [F-18]-Fdg

Pet Study. J Neuroimaging. 2015;25(2):281-8.

Bohnen NI, Koeppe RA, Minoshima S, et al. Cerebral

glucose metabolic features of Parkinson disease and

incident dementia: longitudinal study. J Nucl Med. 2011;

(6):848-55.

Diehl-Schmid J, Grimmer T, Drzezga A, et al. Decline of

cerebral glucose metabolism in frontotemporal dementia:

a longitudinal 18F-FDG-PET-study. Neurobiol aging.

;28(1):42-50.

Mosconi L, et al. Multicenter standardized 18F-FDG

PET diagnosis of mild cognitive impairment, Alzheimer’s

Disease, and other dementias. J Nucl Med. 2008;49(3):

-8.

Gomperts SN, Rentz DM, Moran E, et al. Imaging

amyloid deposition in Lewy body diseases. Neurology.

;71(12):903-10.

Antonini A, et al. Differential diagnosis of parkinsonism

with FDG and PET. Mov Disord. 1998;13:268-74.

Eckert T, et al. FDG PET in the differential diagnosis of

parkinsonian disorders. Neuroimage. 2005;26:912-21.




DOI: http://dx.doi.org/10.15448/2357-9641.2017.1.28174

e-ISSN: 2357-9641

 

 This journal is a member of, and subscribes to the principles of, the Committee on Publication Ethics (COPE) http://www.publicationethics.org

Licença Creative Commons

Except where otherwise noted, content of this journal is licensed under a Creative Commons Attribution 4.0 International license.

 

Editorial Policies of Brazilian Scientific Journals. Deposit availability: Blue .

 

Copyright: © 2006-2017 EDIPUCRS