SUMMARY

Introduction: When impressions are taken, saliva and blood are frequently seen in the material, and washing them does not always guarantee that all organisms have been removed. Therefore, methods for disinfecting impressions (immersion and spray) have become a necessity, but they can affect the accuracy of dental impressions. Purpose: This study aimed to evaluate the dimensional stability of dental impression materials after immersion in disinfectant solutions. Material and methods: This study used a total of 135 impressions, 45 of each of the following materials: Impregun F® (polyether), Permelastic® (polysulfide) and Hydrogun® (irreversible hydrocolloid). Sodium hypochlorite and glutaraldehyde were selected as disinfectants and the immersion times were 10 and 15 min. Ten (10) impressions of each material were immersed in both solutions: 2% glutaraldehyde solution (Glutacid® 2%) and sodium hypochlorite solution (Milton 1%), for 10 min, and a further 10 impressions for 15 min. The other 5 impressions of each material were used as a control group without immersion in disinfectant solutions. Results: Neither polyether nor polysulfide impressions showed any statistically significant difference (ANOVA) from their control measurements after being soaked in the two disinfectant solutions. However, when the alginate impressions were disinfected by sodium hypochlorite for 15 minutes, a significant distortion (~0.122 mm) occurred, compared with control group. Conclusion: Within the limits of this study it can be concluded that the immersion practices for disinfection did not influence the quality of impressions obtained, except when sodium hypochlorite was used as disinfectant and immersion time was 15 minutes. UNITERMS: dimensional stability; disinfection; impression materials.
Evaluation of dimensional stability of impression ...

Panza LHV, et al.

INTRODUCTION

During the past few decades, authors have perpetuated the notion that dental impressions can lead to transmitting diseases, such as B hepatitis, tuberculosis, herpes and AIDS (Bond et al.3, 1983). When impressions are taken in retentive edentulous areas and subgingival preparations, blood has frequently been seen in the material, and washing alone does not clear it away, so there is no guarantee whatever that all organisms from the mouth that may have adhered to the impression surface have been removed (Look et al.13, 1990; Rios et al.18, 1996). Thus, disinfecting methods have become a necessity; but these can affect the accuracy of dental impressions (Minagi et al.16, 1987; Setcos et al. 20, 1985; Setcos et al.21, 1986; Johnson et al.9, 1998; Drenon et al.7, 1989). In 1985, The American Dental Academy (ADA) published guidelines for infection control in the dental office and commercial dental laboratory. Contaminated materials and impressions should be cleaned and disinfected before being handled in the dental laboratory (Drenon et al7, 1989).

Immersion and spray disinfectants, as well as many other solutions have been tested and proved to be effective for this purpose. The most reliable disinfection method is to immerse the impression to ensure that the disinfectant solution comes into contact with all the impression material surfaces and the tray (Ada5, 1977; Durr et al.8, 1987; Johnson et al.9, 1998; Johnson et al.10, 1998; Langerwalter et al.11, 1990; Merchant et al.15, 1984).

Earlier studies have shown that chemical disinfectants are effective against the hepatitis B virus after 10 minutes of exposure (Bond et al.3, 1983; Tullner et al.23, 1988). However other authors had used different immersion times for disinfecting impressions and found results differing from those of Bond and Tullner (Bergman et al.2, 1980; Johnson et al.10, 1998). Thus, this study aimed to evaluate the dimensional stability of polyether, polysulphide and irreversible hydrocolloid impressions when immersed in two disinfectant solutions 2% glutaraldehyde (Glutacid® 2%) and sodium hypochlorite (Milton 1%) for periods of 10 and 15 minutes.

MATERIAL AND METHODS

A metal master model was used as described in The American Dental Association specification number 19 shown in Figure 1.

Forty-five impressions were made with each of the following materials: Impregun F® (polyether),...
The cast and the impressions were separated from the material. Afterwards, a 1 kg weight was placed over the perforated metal cast in order to expel excess material. Constantly increasing pressure was applied to a graduated mixture according to the manufacturer’s recommendations at room temperature (22° ± 1°C). A gradual, mixed hydrocolloid was used as control group, without being immersed in any disinfectant solution. The experimental groups were divided according to the diagram:

- Control group (n = 5)
- 1% Sodium hypochlorite (n = 20)
- 2% Glutaraldehyde (n = 20)
- 15 min
- 10 min

Ten impressions from each group of materials were immersed in glutaraldehyde solution for 10 min, and 10 impressions of the same materials were immersed for 15 min. The same procedure was carried out with the sodium hypochlorite solution. Five (5) impressions of each material were used as control group, without being immersed in any disinfectant solution.

The impression materials were dispensed and mixed according to the manufacturer’s recommendations at room temperature (22° ± 1°C). A gradual, constantly increasing pressure was applied to a perforated metal cast in order to expel excess material. Afterwards, a 1 kg weight was placed over the cast and the impressions were separated from the tray after 6 minutes. They were measured immediately after the impression procedure, to prevent any risk of distortion. Next, every impression was immersed in a disinfectant solution for 10 or 15 minutes, removed and rinsed under cold running water for 30 seconds and dried with compressed air. Immediately after drying, the original impressions were magnified ×30 and the distances between the lines AB, CD, AC and BD as shown in Figure 1 were measured three times by two examiners, for each elastomeric material. Irreversible hydrocolloid impressions were measured twice, because this material is more susceptible to syneresis and drench (Bayindir et al., 2002). Mitutoyo digital measurement microscope (TM500) sensitivity of 1.0 µm was used.

The analysis of variance (ANOVA) model was used to test the null hypothesis that there was no difference between means for a particular impression material for disinfectants and the control, and the Tukey test was used to analyze dimensional changes of each impression material after immersion. All the hypotheses tested were conducted at a 95% level of confidence.

RESULTS

A total of 135 impressions were made and distributed between control and experimental groups. A graphic presentation of the data in Table 1 includes means and standard deviations. Standard deviations ranged from 0.009 to 0.140 for alginate impressions, 0.004 to 0.092 for polyether and 0.016 to 0.149 for polysulfide. The results of the measurements obtained are expressed in millimeters.

<table>
<thead>
<tr>
<th>Material/Condition</th>
<th>Means/AB</th>
<th>Means/CD</th>
<th>Means/AC</th>
<th>Means/BD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alginate/control</td>
<td>24,062 ± 0.035</td>
<td>24,108 ± 0.053</td>
<td>4,197 ± 0.009</td>
<td>4,094 ± 0.016</td>
</tr>
<tr>
<td>Alginate/Hypochlorite 10 min</td>
<td>24,008 ± 0.046</td>
<td>24,077 ± 0.140</td>
<td>4,208 ± 0.029</td>
<td>4,108 ± 0.044</td>
</tr>
<tr>
<td>Alginate/Hypochlorite 15 min</td>
<td>23,871 ± 0.123</td>
<td>23,804 ± 0.122</td>
<td>4,191 ± 0.035</td>
<td>4,182 ± 0.095</td>
</tr>
<tr>
<td>Alginate/Gluteraldehyde 10 min</td>
<td>23,945 ± 0.126</td>
<td>23,935 ± 0.094</td>
<td>4,165 ± 0.047</td>
<td>4,079 ± 0.049</td>
</tr>
<tr>
<td>Alginate/Gluteraldehyde 15 min</td>
<td>23,983 ± 0.090</td>
<td>23,982 ± 0.098</td>
<td>4,166 ± 0.040</td>
<td>4,071 ± 0.024</td>
</tr>
<tr>
<td>Polyether/Control</td>
<td>23,997 ± 0.092</td>
<td>24,049 ± 0.056</td>
<td>4,182 ± 0.052</td>
<td>4,125 ± 0.045</td>
</tr>
<tr>
<td>Polyether/Hypochlorite 10 min</td>
<td>24,061 ± 0.021</td>
<td>24,079 ± 0.029</td>
<td>4,204 ± 0.007</td>
<td>4,139 ± 0.004</td>
</tr>
<tr>
<td>Polyether/Hypochlorite 15 min</td>
<td>24,083 ± 0.014</td>
<td>24,106 ± 0.012</td>
<td>4,215 ± 0.010</td>
<td>4,140 ± 0.006</td>
</tr>
<tr>
<td>Polyether/Gluteraldehyde 10 min</td>
<td>24,081 ± 0.008</td>
<td>24,079 ± 0.015</td>
<td>4,207 ± 0.015</td>
<td>4,123 ± 0.013</td>
</tr>
<tr>
<td>Polyether/Gluteraldehyde 15 min</td>
<td>24,089 ± 0.014</td>
<td>24,097 ± 0.015</td>
<td>4,208 ± 0.015</td>
<td>4,115 ± 0.010</td>
</tr>
<tr>
<td>Polysulfide/Control</td>
<td>24,103 ± 0.018</td>
<td>24,092 ± 0.019</td>
<td>4,220 ± 0.029</td>
<td>4,175 ± 0.049</td>
</tr>
<tr>
<td>Polysulfide/Hypochlorite 10 min</td>
<td>23,974 ± 0.149</td>
<td>23,998 ± 0.117</td>
<td>4,174 ± 0.016</td>
<td>4,141 ± 0.045</td>
</tr>
<tr>
<td>Polysulfide/Hypochlorite 15 min</td>
<td>24,062 ± 0.067</td>
<td>24,067 ± 0.021</td>
<td>4,171 ± 0.041</td>
<td>4,172 ± 0.024</td>
</tr>
<tr>
<td>Polysulfide/Gluteraldehyde 10 min</td>
<td>24,102 ± 0.039</td>
<td>24,080 ± 0.018</td>
<td>4,193 ± 0.034</td>
<td>4,154 ± 0.035</td>
</tr>
<tr>
<td>Polysulfide/Gluteraldehyde 15 min</td>
<td>23,994 ± 0.044</td>
<td>23,985 ± 0.107</td>
<td>4,188 ± 0.054</td>
<td>4,161 ± 0.031</td>
</tr>
</tbody>
</table>
The Tukey Test was used to analyze the results and showed no significant dimensional changes in polyether and polysulfide impressions in all periods of disinfection with glutaraldehyde and sodium hypochlorite ($p = 0.05$).

Neither polyether nor polysulfide impressions showed any statistically significant differences from their control measurements after soaking in the two disinfectant solutions. The null hypothesis for these experiments was that the mean distances measured in the control group were the same, irrespective of the impression being soaked in either one of the disinfectant solutions. However, after the alginate impressions were disinfected with sodium hypochlorite for 15 minutes a significant change was observed when compared with control group. A reduction in measurement represented alginate shrinkage. Macro and microscopic porosities were also found. The differences attained 0.3 mm ($3 \times 10^{-4} \text{m}$) mainly in the largest distances (AB and CD).

DISCUSSION

The effects of different disinfectant solutions and times on three impression materials have been evaluated. There have been disagreements regarding their dimensional stability after the process (Drenon et al., 1989; Johnson et al., 1998; Setcos et al., 1985, Thouati et al., 1996).

According to the specifications provided by the Disease Control Centers, chemical disinfectants such as chlorine compounds, formaldehydes, glutaraldehydes, phenols, and iodophors have the potential to eliminate hepatitis, herpes, and AIDS viruses in 10 to 30 minutes (Matyas et al., 1990). In this study, the choice was to evaluate polyether, polysulfide and irreversible hydrocolloid, because they are hygroscopic and thus less stable than polyvinyl siloxanes. Sodium hypochlorite and glutaraldehyde were chosen because these disinfectants are more widely used. There are also various types of test blocks used (with full arch casts, cavities for inlays). For this study, the American Dental Association Specification No 19 was chosen for standardizing the disinfection and impression procedures, because it’s usefulness in dentistry has been professionally recognized. Individual acrylic resin trays were not manufactured for the impressions because of the risk of water absorption and introduction of other variations. Stainless steel trays were used instead. For the same reason, the gypsum material was not poured.

The problem of disinfecting dental impressions (Lepe et al., 2002), particularly irreversible hydrocolloid and hydrophilic ones, such as polyethers is a major concern. Herrera et al. (1986); Merchant et al. (1984), Langerwalter et al. (1990) and Matyas et al. (1990) did not find dimensional change after the use of a 0.5% sodium hypochlorite solution for 30 minutes. In this study, the concentration of sodium hypochlorite was 2 times greater, which could explain the differences in the results. However, Minagi et al. (1987) showed that immersion in 2% glutaraldehyde for 60 minutes for irreversible hydrocolloid impression materials did not jeopardize surface details. When it was immersed in 1% sodium hypochlorite for 15 minutes, however, it was possible to observe statistically significant differences, and macroscopic alterations, like little craters, which can affect the final results of dentures, because these surface imperfections would be transferred to the cast, and subsequently to the final restoration.

Although this study showed no significant linear dimensional changes in polyether impressions for any disinfectants, other studies have shown that a 15-minute immersion of this material adversely affected the resultant casts. The same authors recommended that polyethers should not be immersed in disinfectant, because they may expand in periods exceeding 5 hours (Bergman et al., 1980; Chong et al., 1969; Dellinger et al., 1986; Drenon, et al., 1989, Johnson et al., 1986; Setcos et al., 1985, Owen et al., 1993; Sawyer et al., 1974). Disinfection of the polyether impressions using an alcoholic glutaraldehyde solution (2%) and sodium hypochlorite solution (1%), for periods of 10 and 15 minutes led to non-significant variations in all measured distances (AB, CD, AC, BD) without loss of accuracy or surface detail, a result consistent with previous studies. (Johnson et al., 1998; Drenon, et al., 1998, Setcos et al., 1985, Owen et al., 1993, Sawyer et al., 1974). The results obtained with polysulfide impression disinfections shows no difference in mean values after all times of disinfection with both disinfectant solutions.

The results of this research are important to the dentist to select the appropriate disinfectant solution for specific clinical conditions such as fabrication of study models, removable partial dentures or fixed partial dentures.

CONCLUSION

Within the limits of this study it can be concluded that disinfect immersion practices did not influence the dimensional stability of...
impressions obtained, except when sodium hypo-
chlorite and a 15-minute immersion time were
used for disinfecting irreversible hydrocolloid
impressions.

REFERENCES

1. Bayindir F, Yanikoglu N, Duymus Z. Thermal
and pH changes, and dimensional stability in irre-
versible hydrocolloid impression material
2. Bergman M, Olsson S, Bergman B. Elastomeric
impression materials. Dimensional stability and
surface detail sharpness following treatment with
3. Bond WW, Favero MS, Petersen NJ, Ebert JW.
Inactivation of Hepatitis B virus by intermediate-to-
4. Chong MP, Docking AR. Some setting characteristics
of elastomeric impressions materials. Aust Dent J.
1969;14:295-301.
5. American Dental Association. Council of Dental
Materials and Devices: specification no 19 for non-
aqueous elastomeric dental impression materials.
6. Dellinger EL, Williams KJ, Setcos JC. Influence of
immersion and spray disinfectants on alginate
7. Drennon DG, Johnson GH, Powell GL. The
accuracy and efficacy of disinfection by spray
atomization on elastomeric impressions. J Prosth
8. Durr DP, Novak EV. Dimensional stability of alginate
of alginate impressions immersed in disinfecting
Dimensional stability and detail reproduction of
irreversible hydrocolloid and elastomeric
impressions disinfected by immersion. J Prostheth
10. Johnson GH, Drennon DG, Powell GL. Accuracy of
elastomeric impression disinfected by immersion.
11. Langenwalter EM, Aquilino SA, Turner KA. The
dimensional stability of elastomeric materials
following disinfection. J Prostheth Dent. 1990;63:
270-6.
12. Lepe X, Johnson GH, Berg JC, Aw TC, Stroh
GS. Wettability, imbition, and mass change of
disinfected low-viscosity impression materials. J
Prostheth Dent. 2002;88(3):268-76.
13. Look JO. Preliminary results from disinfection of
irreversible hydrocolloid impressions. J Prosth
14. Matyas, J, Dao N, Caputo AA, Lucatorto FM. Effects
of disinfectants on dimensional accuracy of
impression materials. J Prostheth Dent. 1990;64:
25-31.
15. Merchant VA, Radcliffe RM. Preliminary investiga-
tion of a method for disinfection of dental
16. Minagi S, Yano N, Yoshida K, Tsuru HSE. Prevention
of acquired immunodeficiency syndrome and
hepatitis B. II: Disinfection method for hydphilic
17. Owen CP Goolan R. Disinfection of impression
materials to prevent viral cross contamination: a
review and a protocol. Int J Prosthodont. 1993;
6:480-94.
18. Rios MDL, Morgano SM, Stein RS, Rose L. Effects
of chemical disinfectant solutions on the stability
and accuracy of the dental impression complex. J
19. Sawyer HF, Neiman R et al. Accuracy of cast
produced from the three classes of elastomer
impression materials. J Am Dent Assoc. 1974;89:
644-8.
Disinfection of a polyether dental impression ma-
The effects of disinfectants on a polysulfide
impression material [abstract]. J Dent Res. 1986;
65:260.
22. Thouati A, Deveaux E, Iost A, Behin P. Dimensional
stability of seven elastomeric impressions materials
immersed in disinfectants. J Prostheth Dent. 1996;
76:8-14.
23. Tullner JB, Commette JA, Moon PC. Linear
dimensional changes in dental impressions after
immersion in disinfectant solutions. J Prostheth Dent.