The distribution of rhotics in Portuguese and in other Romance languages

Joan Mascaró*

The distribution of rhotics in the Portuguese of Rio Grande do Sul illustrates quite well a situation that, with some variations that do not invalidate the general picture, extends to many other Romance varieties that present a contrast between [r] and [r]. Here are the relevant data:

(1) Possible contrast: between vocoids

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[r]</td>
<td>[r]</td>
</tr>
<tr>
<td>mi[r]a</td>
<td>'myrrh'</td>
</tr>
<tr>
<td>a[r]lar</td>
<td>'to blows'</td>
</tr>
<tr>
<td>b[r]jo</td>
<td>'neighborhood'</td>
</tr>
</tbody>
</table>

(2) Complementary distribution

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[r]</td>
<td>[r]</td>
</tr>
<tr>
<td>a. Word initially</td>
<td>[r] isco</td>
</tr>
<tr>
<td>b. Syllable initially after true consonant</td>
<td>hoo[r]ado</td>
</tr>
<tr>
<td>c. Second element in an onset</td>
<td>p[r]ata</td>
</tr>
<tr>
<td>d. Syllable finally (internal position)</td>
<td>ma[r] ca</td>
</tr>
<tr>
<td>e. Syllable finally (absolute position)</td>
<td>ma[r] tranquilo</td>
</tr>
<tr>
<td>f. Between vocoids, word finally</td>
<td>ma[r] a</td>
</tr>
<tr>
<td></td>
<td>ma[r] a zul</td>
</tr>
</tbody>
</table>

* Universitat Autònoma de Barcelona

See Monaretto (1997) for detailed data. For other Brazilian varieties see Angenot and Vandressen (1979), Cristóforo (1998, p. 51).

We can break the analysis of rhotic distribution into two parts:

(3) Problem 1: How do we account for the contrast?
Problem 2: How do we account for the distribution in noncontrastive positions?

The standard approach to this question in Romance is inspired in work by Harris (1983), but it is fair to note that the first proponent of the phonemic source of intervocalic tense [r] as /r/ is Mattoso (1953). Under this approach, there is a contrast because although there is a single underlying rhotic, /r/, it can be geminate.1

(4) Standard approach:
Problem 1: Intervocalic [r] is /r/.
Problem 2: Distribution is derived by language particular rules.

In Harris' analysis, which can easily be extended to our Portuguese data (provided we drop the last rule), there are four rules that we will dub for ease of reference Postconsonantal tensing, Word-initial tensing, Degemination, and Coda tensing.

(5) Rules

a. \(r \rightarrow r / [+\text{cons}]a\) Postconsonantal tensing
b. \(r \rightarrow r / x\) Word-initial tensing
c. \(r \rightarrow \emptyset / __ \) Degemination
d. \(r \rightarrow r \) (in emphatic speech) Coda tensing

The standard approach explains why there is no contrast in all positions: sequences of two liquids are not possible word initially, as an onset, or as a coda. At the same time, however, it has to resort to geminate liquids which, even if allowed in some Romance varieties, are rare or nonexistent in others.

On the other hand, the analysis relies on a battery of language particular rules of which only one,Degemination, is independently motivated (it is necessary in order to account for cases like ma/r r/ev/olto ma[r/ lev/olto rough sea].

Descriptively, the situation depicted in (5) is not an impossible one. But, curiously enough, the situation described by (5a-c) is found again and again, with minor changes, in other varieties of Portuguese and in other varieties of other Romance languages as well, while other possible solutions do not arise.

1 A recent analysis of (European) Portuguese can be found in Mateus and Andrade (2000).

On the other hand, (5c) varies across varieties. I summarize the problems of the rule-based account in (6):

(6) a. Problem of lost generality
 Why two rules of tensing in onset initial position? [r]isco / hon[r]ado
b. Problem of directionality
 Why the flap in [oC_], and tense variety in C [n_]?
 p[r]ata
 hon[r]ado
c. Problem of variation
 Why linguistics, dialectal, style variation in coda
 ma[r], ma[r], ma[x], etc.

One of the problems is to account for (6a), i.e., to explain why Postconsonantal tensing and Word-initial tensing are independent processes. So, why don't we find varieties where only the first or only the second apply, like Unattested A and Unattested B?

(7) Unattested A Unattested B
 mi[r]a mi[r]a mi[r]a
 mi[r]a
 [r]isco [r]isco hon[r]ado hon[r]ado

An apparently easy answer consists of merging (5a, b) into (8):

(8) \(r \rightarrow r / \emptyset \)

But now (8) overapplies to intervocalic cases giving rise to *mi[r]a from underlying /mira/: the contrast in this position would be incorrectly neutralized.

On the other hand, it is practically impossible, in a rule based approach, to account for (5b) - while (5c) is easily accounted for: a language with coda [r] has a rule of Coda tensing, a language with coda [r] lacks it.

In trying to give an appropriate answer to the questions in (6) I will rely on the approach developed in Bonet and Mascardo (1997) which develops ideas of Murray and Vennemann (1983), Vennemann (1988), and Clements (1990).

Here I will only give a basic sketch of a solution couched in OT that solves, I think, the main problems of other analyses. I will not go into detailed discussion of the arguments put forward in the literature in favor of particular solutions. Some of the most recent literature, which brings important insights, will not be covered.3

3 In particular Bradley (2001), Harris (2002), and Padgett (2003).
The basic idea is the following: [r] and [ɾ] differ in sonority, and their distribution is heavily influenced by universal sonority preferences in different syllabic positions. The sonority differences can in part be derived by their production and acoustic properties: the trill [ɾ] is typically tense and long, can appear devoiced like obstruents, and in many varieties that keep the /r/-/ɾ/ distinction and the distribution of rhotics analyzed here it has changed into a fricative, mainly [χ] or [ʁ], or into an assimilated [tʃ]. The flap, on the contrary, is short and displays small amounts of energy in the spectrogram. The basic idea is summarized in (9-11).

Choose tense variety or approximant, whichever makes a best (less marked) syllable.

What are the basic conditions for best syllables? They are shown in (10-12):

a. **ONSET.** Maximal sonority rise in first demisyllable (Ω₁)
b. **CODA.** Minimal sonority decline in second demisyllable (Ω₂)
c. **UNIFORMITY.** Maximal uniformity of dispersion (uniform sonority distances between pairs of adjacent segments)
d. **CONTACT.** Maximal sonority decline at syllable contact

(11) c. uniform distance

(12) d. Maximal decline at syllable contact

More formally, we can restate (9-12) as follows:

(13) Where \(σ = X_1..., X_n, X_i \) a segment, let demisyllable \(σ_1 = X_1..., X_i \) and demisyllable \(σ_2 = X_i..., X_n \) then:

a. In \(σ_1 \), Son(\(X_i \)) - Son(\(X_i \)) tends to be maximal
b. In \(σ_1 \), Son(\(X_i \)) - Son(\(X_i \)) tends to be minimal

c. | \(X_i - X_{i+1} \) | tends to be constant

d. Given adjacent segments of different syllables, \(X_i, X_i' \), Son(\(X_i \)) - Son(\(X_i' \)) tends to be maximal

Consider now the following sonority scale, where fricatives are equalled to fricatives, the flap to laterals, and these are kept at equal distance from the end of the scale by increasing sonority distances at its right side:

(14) Sonority scale

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>5</th>
<th>8</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>stops</td>
<td>fricatives</td>
<td>nasals</td>
<td>laterals</td>
<td>glides</td>
<td>vowels</td>
</tr>
</tbody>
</table>

trill

Let us now see how the questions in (6) can be answered. We begin with the first question in (6b), namely why do we get the flap in [cC __], as in [p] r jata, and not the trill? Given the sonority scale, and uniformity (10c) we predict demisyllables with complex onsets like pra, pla, but not *pta, *psa, or *pna, because the sonority distances from the central element of the demisyllable to the first and to the third element are equal (uniform) in the first case, but not in the second. In the following tableau (15) uniformity is shown through subtracting sonority distances. For pra and pra, the relevant sonority values are Son(p)=0, Son(r)=5, Son(p)=1, Son(a)=10. The differences (in absolute values) are as follows: from \(p \) to \(r = 5 \), from \(a \) to \(r = 5 \). We now subtract 5-5=0 and obtain the lowest (i.e. best) value for uniformity. In the case of candidate (15b), we get \(p \) to \(r = 1 \), a to \(r = 9 \), hence 9-1=8 and we obtain a high (i.e. adverse) value for uniformity. Here are the relevant constraints:

UNIFORM DISTANCE: Distances between members of an onset/coda are equal.

IDENT R: Corresponding segments have the same value for rhotic features (the features distinguishing \(r \) from \(r \)).

4 I.e. the absolute value of sonority differences of all pairs of consecutive elements within a demisyllable tends to be the same.

5 The fact that [rʃV] is also a possible demisyllable should also be accounted for. I will ignore this question here, although many obvious solutions suggest themselves.

The distribution of rhotics in Portuguese and in other Romance languages
Notice that this precludes the possibility of having an underlying contrast, since it would always be neutralized in this position. Given Richness of the Base and Lexicon Optimization, the underlying structure in (16) below, /prate/ with the trill, is impossible:

(16)

<table>
<thead>
<tr>
<th></th>
<th>prate</th>
<th>UNIFORM DISTANCE</th>
<th>IDENT R</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>prate</td>
<td>(0)</td>
<td>*</td>
</tr>
<tr>
<td>b</td>
<td>prate</td>
<td>*{1}(8)</td>
<td>*</td>
</tr>
</tbody>
</table>

The second question in (6b) is why we get the tense variety in the context C [o — , as in hon[r]ado, and not the flap, i.e. *hon[r]ado. We can attribute the naturalness of the actual solution by appealing to the need to maximal decline in sonority at syllable contact (10b) which is expressed through the constraint ABRUPT DECLINE, which requires a minimum of sonority decline at the syllable boundary.

Notice that satisfying ABRUPT DECLINE is made possible through the existence of two rhotics. Syllabic contacts like those in asma 'asthma' [a3.me] cannot satisfy the requirement of declining sonority because they have to be faithful to manner features, i.e., 3 cannot turn into j, for instance, in order to fulfill syllable contact sonority requirements.7

ABRUPTRT DECLINE: Sonority at the syllable boundary must decline (In C1.C2, C2-C1 is negative)

IDENT MANNER: Corresponding segments have the same value for manner features.

The decline in sonority is measured by subtracting the sonority value of the final coda segment from the sonority value of the onset initial segment. In on. radu, for instance, n=2 and r=1; since 1-2 = -1, there is decline.

1. Of course ABRUPT DECLINE is a constraint family; here the one requiring a decline of at least 1 dominates the rest.

2. A case in which this actually happens, namely 3 turning into j because ABRUPT DECLINE dominates faithfulness to manner features, is found in Majorcan Catalan, where the verbal root /kun[f]/ is realized with the final fricative and before vowels but with a glide before 2nd person -s: [kun[f]t's/he knows', [kuñ[f] - ζ] to know', [kun[f]-s] you know'.

Here again there is no possibility of having an underlying contrast, since it would be neutralized, given Richness of the Base and Lexicon Optimization.

This ranking predicts of course that if we increase sufficiently the sonority of the first element of the contact cluster C1.C2, ABRUPT DECLINE will be satisfied. This will happen whenever the sonority of C1 exceeds the sonority of C2, namely if C1 is a vocaloid. This is shown in (18), where both candidates show a decline in sonority at the syllable contact:

(18)

<table>
<thead>
<tr>
<th></th>
<th>fejru</th>
<th>IDENT MANNER</th>
<th>ABRUPT DECLINE</th>
<th>IDENT R</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>fejru</td>
<td>(3)</td>
<td>-</td>
<td>*</td>
</tr>
<tr>
<td>b</td>
<td>fej.ru</td>
<td>(7)</td>
<td>-</td>
<td>*</td>
</tr>
</tbody>
</table>

Now notice that ABRUPT DECLINE accepts both candidates; this means that an underlying contrast will be possible, since IDENT R after the tie-up of candidates with [r] and with [r'], will prefer the faithful one. This is shown in (19) with which has now a lexical r:

(19)

<table>
<thead>
<tr>
<th></th>
<th>bajru</th>
<th>IDENT MANNER</th>
<th>ABRUPT CONTACT</th>
<th>IDENT R</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>baj.ru</td>
<td>(3)</td>
<td>-</td>
<td>*</td>
</tr>
<tr>
<td>b</td>
<td>baj.ru</td>
<td>(7)</td>
<td>-</td>
<td>*</td>
</tr>
</tbody>
</table>

Finally consider coda position. Here we have variety internal (style) variation, and also variation across languages and varieties. To give just one illustration of this situation, the variety of Portuguese analyzed here has the flap, Central Catalan has the trill, while the variety of Spanish analyzed by Harris has variation between them:

(20) Portuguese (Rio Grande do Sul) | Catalan (Central) | Spanish (Mexican)
mar | mar | mar

The distribution of rhotics in Portuguese and in other Romance languages
Here the analysis is parallel to the standard one; since there is variation, the most natural tendency to having a coda with low sonority distance to the nucleus will be compensated in some varieties by a requirement to have tense rhotics in coda position.

The final case to be accounted for is word-initial position. So far we would expect contrast in this position, the same we find in intervocalic position. I illustrate these cases with intervocalic and glide-vowel position:

\begin{equation}
\begin{array}{ll}
\text{V__V (internal)} & \text{mi} [\text{j}a \\
\text{V__V (across #)} & \text{este} [\text{r} \text{jisco} \\
\text{glide__V (internal)} & \text{ba} [\text{j} \text{lo} \\
\text{glide__V (across #)} & \text{trarei} [\text{r} \text{jisco}
\end{array}
\end{equation}

Here the rhotic in postvocalic position in word initial position must be faithful to the independently existing word [risku], through an output to output constraint:

\begin{equation}
\begin{array}{cccc}
\text{este} & \text{r} & \text{isco} & \text{ABRUPX} \text{CONTACT} & \text{QQ-IDENT R} & \text{IDENT R} \\
\text{a.} & \text{este} [\text{r} \text{jisco} & (-3) & * & * \\
\text{b.} & \text{este} [\text{r} \text{jisco} & (-7) & * & *
\end{array}
\end{equation}

References

